e : -

f @
-~
{ n
I N
NW o
HEQE vt
<
w Q
AN N
ST
I3
-4
[3
3 >
T X
=
~
X 2
ot
b
b1 !
D
-
0. N
o~
)
.
o~
x
g2
<
X
af i
[=]
x
wo |
O |
x i
oX
20
e
~AQ
wae
=
T
[Ve
-3x
(=]
W
-
L
=4
[
v
-4
-
<
=
=2

T T T s e e e | S ———

PO

a“";‘:‘:" ""

l, 'l’

,‘Ql

l
"‘ “0 i '

'o

QQ

Y

A

v

P

.’

.'l. "‘ '.
.‘l

w

1.0 &
—————— m
———_m
%

w

=

: u

R

ll==

l

N

I

iz

FF

Bae 22
=

3 5

2

e
s

s

(5 MICROCOPY RESOLUTION TEST CHART

(!
) q:l

l

%
,‘.s 3 v

NATIONAL BUREAU OF STANDARDS-1963-A

" i Py

l;f
'l 'o‘

R

l' AN
, 50

Tk

.0 B0y 5
lq \’ f.’oh

ashington, DC 20375-5000

aval Research Laboratory

NRL Publication 0120-5150

AD-A198 120

Software Technology for

Adaptable Reliable Systems e

(STARS) Workshop E

March 24-27, 1986 °

Approved for public release; distribution unlimited.

- w aw @
-

8

X

B I R T G o A N AR S O W
Al ,J'. -:_ T : __.."\‘l' "..'& ,\:Q-r&.\'&- e

“m~ AT, o LR LTS LS LR
e T T R A S A T
L) oMWW DR LA A SR A D g S0

P Software Technology for
E_ Adaptable Reliable Systems

: (STARS) Workshop

A March 24-27, 1986

4
i::‘:.:: _ Accesion For ﬁ!
sl NTiS CRA& |/L »

, DTIC 1AB P2 !
i:'ii QV Unannournced oo !
;‘: Justifisation ?
‘:::; e

) B

s::.i BY

13_' Distribution

Naval Research Laboratory

RV Washington, DC 20375-5000

v et

\\ul"’.’q-.;|ntnla,t QAN A0) ASAD \} TN LI g)
B T Nt X DR R N O B N ST X RN KA R R R XK DO RN !.'i,!'é?‘a’b?:;»f;’tf:'b‘,:ﬁ‘}'sf:'c"'a“'e‘fh Nttt

»avke

»

e e L

.!
)
*
" X
" @
g CONTENTS
Q v
PREFACE .ooooooeeooeooeeveovevoooseosseessee s esesesssssmsssesees s oo s ssssseseses e s sessm s s see oo oo eeeesesmmeme e eeeseeessseees iv
X VISE: A VISUAL SOFTWARE DEVELOPMENT ENVIRONMENT SUPPORTING REUSE 1
M Adarsh K. Arora, James C. Ferrans, and Rob Gordon
)
h A PROTOTYPE SYSTEM TO AUTOMATE THE QUALIFICATION OF SOFTWARE FOR USE
A IN A REUSABLE SOFTWARE INVENTORY SYSTEM ...ooniieeeereeeeeeeeeeeeeveeeseeesssseseessesessesesoes 5
N F.C. Blumberg III, C.T. Shotton, Jr., and T. Zyla
-_, INFORMATION THEORY AND SOFTWARE REUSEooovieieteeeeeeeceseeeeenssassesssessesesassasessesassass 37
K Rodney M. Bond
s -
' WHY PROGRAMS BUILT FROM REUSABLE SOFTWARE SHOULD BE SINGLE
i PARADIGM oot teeseseseesasssesesaetaesesmses s et st s e sae s senasssesassateesasaetasansasansases 51
[l Elaine N. Frankowski
-

UNDERSTANDING ADA (R) SOFTWARE REUSABILITY ISSUES FOR THE TRANSITION
! OF MISSION CRITICAL COMPUTER RESOURCE APPLICATIONScocoviiivereerrcrecrcrenenancenes 59
A. Gargaro, and T. Pappas

.I
’ (‘% COSMIC ~ NASA’s SOFTWARE DISTRIBUTION CENTERovviivirierreeiereeeresveseneeesnsensesssnes 87
» ! John A. Gibson

0

s THE DESIGN FOR REUSABLE SOFTWARE COMMONALITY ..ocooiiieiirercreenerereesrnresseseresseeees 97
/ Norman S. Nise, and Chuck Griffin

4

- MSAT BRIEF - NARRATIVE TO ACCOMPANY THE HIGH LEVEL TECHNICAL BRIEF 133
C. Ogden

: A CLASSIFICATION SCHEME FOR REUSING SOFTWARE COMPONENTSccccovrcereveercenne 155
* Ruben Prieto, and Barbara Moore

.

- GUIDELINES FOR WRITING REUSABLE ADA (R) SOFTWAREcooriieerrreceeneenveennssesseenes 181
Rick St. Dennis

)

;’ ALTERNATIVE TECHNOLOGIES FOR SOFTWARE REUSABILITYoocoriecirrcienirreneeniae 195
X Mark Simos

i)

¢ CREATING REUSABLE ADA (R) SOFTWAREcoooitiviiviertirteieeeiterseersrenteseerssassessssesssessessassnes 205
X Ed Berard

N

i AUTOMATED MEASUREMENT SYSTEM (AMS) ooooicctievtrnteereesneesenssseessneseseresneessnnanns 297
N Karen L. Like

" DOD-STD-2167 REV A PLANS ... rireeetiiteecsiseceessseecssssressssssssssasessstassasssssssssesessasssssssesssssessssssoss 355
< .@_ 0. Golubjatnikov

. -

“' Wu

X

"l

Kl
. idi

4

-

by t‘]
UL
\ J."‘ (R WM L

D8N DADCOOWN OUTLIONUS
'l'l 4 '\'" i‘t’ ‘:A ;‘.!‘ 6‘.1‘ !". W4 ’S:‘ .‘?\"gh':f!.!‘t,i 4.4

, v 00O, NN Y } AN
'lf«‘da‘:’fﬁto‘d’*':ti':fv'.’f:ﬁ‘m‘uf’s'f'g'!‘a’f‘ﬁz‘t’bﬂg’t‘:’.“e"_“"-\.‘»‘s". RO Kt KURIA LS

PREFACE

WORKSHOP ON APPLICATIONS SYSTEMS AND REUSABILITY
24-27 March 1986

The Department of Defense Software Technology for" Adaptable Reliable Systems (STARS)
Project is holding its third workshop on Applications Systems and Reusability 24-27 March 1986
at the Ramada Inn, Oxon Hill, MD.

- The intent of this workshop series is to seek sources of information and expertise in the
building of mission critical applications software. Reusable part specification, building, testing,
maintaining and)‘ggg' ization are of interest. With the promulgation of Ada as a single High
Order Language §HO%) to build future applications within the three DOD services, there exist
new opportunities of reuse of software. Reuse could reduce software system development time
and maintenance costs, and improve reliability. The intent of the workshop will be to present
and discuss summarized material on the following issues:

—— — __‘__/”

\“ _A1) Specification/Design|
? . A2) Reusable Component Definition]

+(3) Validation of Software Components;

914) Library Experience;

+45) Automated Part Composition,

#16) Logistics of Organizational Reuse of Software and as Government
Furnished Material, and Problems Encountered with Data Rights and
License Arrangements, and User Liability Claims;

#-(7) Encouraging Deposits‘) Gt :

‘9/(8) Ada Experience. e) o

e 20y ; . ARG . iy r
OO OO ORI ORI) DA RN B AT R T U CRANSACGANSGE GAONOBOINGION &g 870,079 37y H0¢ #
AR e St S G e TR B SN GRAAI AR CEMDATE S

T
‘.%5_:. e

.‘- e
y 2 AW

= e
h
-

Wi
RN N {) 30 (] ¢
bttt ',a',“,b'.‘fi‘A,ﬁkifhi?n;l!'!ﬁ.%\. SEINAAS RN ?3..5?!"?'?!‘}i’.?091f*?af".tf‘f«!l!afl‘af‘?ﬂib‘

Ay

M

()

VISE: A VISUAL SOFTWARE DEVELOPMENT
ENVIRONMENT SUPPORTING REUSE

Adarsh K. Arora

James C.

Ferrans

Rob Gordon

Gouid Research Center
40 Gould Center
Rolling Meadows, IL 60008

Objectives

The Visual Sofiware Development Environment (VISE) project is part of the Visual Program-
ming Project at Gould Research Center (ARORA85). The overriding objectives of the Vise Project
are to decrease software development time and improve programmer productivity through the use of
workstation-based, graphical software development environments. Since software development is a
long and complex process, we have chosen to develop tools to aid in the detailed design, coding, and

debugging stages of the software life-cycle.
The major objectives of Vise are to:

(1) Build an integrated, workstation-based software development environment that allows design,
coding, testing, and debugging to occur in parallel without forcing the user to make expensive
"context switches' between the editor, the compiler, the linkage editor, and the debugger;

(2) Exploit advanced user interface technology to

make programming more productive;

(3) Develop rich libraries of reusable software components which can be intelligently searched for
incorporating components into a developing program; and

(4) Use design information to automatically generate target language code, and to select data struc-

tures and procedural templates.

The accomplishment of these goals would represent a considerable improvement in programmer
productivity and would reduce the duration of the software life-cycle.

Description of Project

Current software development tools
offer little help in mapping the initial abstract
solution of a probiem into a target language
program. They generally address isolated
stages of the life-cycle. For example, pro-
gram design languages (e.g., (Teic77) are
used to specify a high-level description of a
program, while syntax-directed editors ease
the coding task. No general tools exist that
assist in the transition from a high-level
problem description to target language source
code.

The first rough draft of a program is
typically an informal, structured-English

description. Subsequent versions refine this
description to successively lower and more
precise decompositions of the problem until
the target language is reached. Vise captures
data types and procedural information from
the later design stages and uses it to generate
the target language code directly. To support
this, Vise allows a program to contain
pseudo-code statements called design notes
as well as normal target language text. The
programmer can select 2 design note and ask
the system to refine it into target language
code. After this is done, the refinement code
is inserted and the design note becomes a
comment introducing the code. Refinement
is driven by information kept in one or more

et Akl

(] T (R PP (] A\ [
0"”.0..0!lf"a?“e"‘&!‘?.o.‘“e' W ‘C'se\‘lﬁ'n ?“atﬁ? ss! io!t‘cslﬁ ati";‘s A

LA

X

A
D Q
.l."."t'!’ lu.:’o' ,'n"'

l’»‘l’l l‘q

LWL ALY

DU DA,
KRR N .f.'bﬂq‘,sfg‘i’u'}'.

Software Coinponents Libraries (SCLs). SCL
organization and refinement is discussed in a
subsequent section.

Vise will also address testing and
debugging. Graphical data structure display
and animation and control flow tracing will be
used to enhance the programmer’s ability to
monitor program behavior. Trace and
single-step facilities will provide the capability
of viewing how each program statement
affects a particular data object.

Finally, a long term goal of the Vise
project is to incorporate an expert system to
aid in automatic data structure selection.
After asking the user about usage patterns
and access requirements, the assistant will
suggest appropriate data types and give the
rational behind their selection.

Technical Approach

Vise is being developed on Sun work-
stations using UNIX, C, and Objective C.
With the decreasing cost of networked,
single-user workstations, soon it will be prac-
tical to equip every programmer with one.
The graphics capabilities of these worksta-
tions make them a logical choice for hosting
a visual development environment. We are
initially supporting the C language, but our
technology is general and can be -easily
applied to ADA, FORTRAN, and other
languages.

The Task Environment Manager
(TEM) is the control and coordination layer
packaging all Vise tools. It is responsible for
tracking the environment of a programming
task: which source files belong to it, which
libraries it references, etc. It is used to
import existing target language files into the
system and export files out of Vise. In the C
language implementation, the TEM export
facility generates the "make" file used to build
the task with conventional UNIX develop-
ment tools.

A gsyntax-directed editor and an incre-
mental compiler form the foundation of Vise.
The programmer can have muitiple edit win-
dows open simultaneously on different source
files, and every change he makes is compiled

and checked as he makes it. The incremental
compiler keeps an internal abstract syntax
tree of the program in executable form. As
in PECAN (Reis84), we intend to support
geographical display and editing of programs
(e.g., via flow <charts and Nassi-
Schneidermann diagrams) as well as textual
editing. The target- language syntax is aug-
mented to accept design notes in arbitrary
natural language.

The Animator/Debugger is an inter-
preter that walks the abstract syntax tree and
executes the program. It supports the typical
facilities of today’s symbolic debuggers (e.g.,
control flow tracing, breakpoints, watch-
points, stepping) as well as higher-level
graphical display of data structures. Control
flow animation is done through the program
editing views, as in PECAN.

Vise also contains a help facility and an
Agenda Manager (AM). The AM is used to
keep agendas of pending items that need to
be done. For instance, if the editor finds a
syntax error, this error is automatically added
to an agenda for that source file, and
automatically removed when it is fixed. The
user can create his own agendas of re-
minders.

The final component of Vise is the
Software Component Library Manager
(SCLM). We describe its organization and
how it supports design note refinement in the
next section.

Software Component Library Manager

Software Component Libraries are col-
lections of reusable software modules along
with documentation and other supporting
information. The SCLM manages these
libraries and supports browsing and updating
operations. Libraries may be organized in
any manner, both topically and organization-
ally, and may be owned by anyone.

The major type of component in an
SCL is the Abstract Data Type (ADT). This
corresponds closely to an ADA package.
Support also exists for generic ADTs, which
correspond to ADA generic packages. ADTs
may be derived from generic ADTs, and the
user may create instances of ADTs in a pro-
cess called instantiation.

4 600 ° CF A NYI00 , AT ‘ W Lt '
"‘.9‘0..03.!.s'ht'.';",‘g"};"-.’a‘!‘,\'. ‘!’t”'cﬁ’b’..&!’ ‘!'.\“»‘?&. .?t‘?éﬂ.u e) ;‘?0’:!{,‘:‘.0,‘09\!v!l'p’\'a?i'.!t‘.’l'».l‘.'ﬂh':’ﬂt'|

)
;:;:;.‘
4 "0
11'1.1
@
vy
R
,::t.:| SCLs also contain independent func- application of Vise technology. Gould
‘.::".& N tions (those that do not pertain to an ADT) Research Center has recently awarded a one
:,:.' \@ and code tempiates, along with a hierarchical million dollar contract from LABCOM to
+ ' index to them. Documentation, sources, develop a visual VHDL Design Workbench
oo objects, and preprocessor "include” files are for hardware designers. With the DoD
o also available for use or perusal They also requirement that all VHSIC chips be specified
:": contain linguistic information needed in using VHDL, an Ada-like hardware design
.0: design note recognition. language, the DoD has initiated work on con-
:z:. When a user picks out a design note structing a development environment for the
“‘3‘ and asks the editor to refine it into target VHD.L designer. . The V.H DL Workbench
Iy language code, the editor passes the note to prov_ldes a graphical environment for the
i the SCLM 'l:he SCLM uses a simple key- specification of hardware components and the
'l. word recog.nition scheme to search each SCL automati_c gene\jation‘ of Qortloqs of VHDL
'.::!.‘ for matching actions, and the user selects through interaction with this environment.
e which one lqoks most appropriate if more Current Status
(than one action was matched. The action
o refers to some independent function, code The development of Vise has been
‘, - template, or ADT operation function, and divided into three phases. In Phase [we are
the appropriate function call or other target devising the core system: the text editor, the F
0N language code is inserted into the program in incremental compiler, the Software Com-
'2: place of the design note. The note becomes ponent Library Manager, design note
Fa a comment to the new code. refinement the Task Manager, and the
',,, Th Agenda Manager. We have six people work-
; :«*: e user can ma{te reﬁnemgm very ing on the project and expect to be finished
) loose (only one word in the design note by the summer of 1986
a . . .
Pn matches a word in an action template) or
X ';'.'.- very restrictive (the design note must match In Phase II we intend to enhance the
3 Js.:: the action template semantics exactly). Phase I components and add the following
P) When the user picks the desired action, capabilities: graphical program dispiay and
W ‘w‘r linguistic analysis is used to extract informa- editing methods, new SCLM capabilities,
;:,.. tion from the design note and insert it into additional SCLs, and the visual
*::.v‘ slots in the generated code. : Animator/Debugger. This is scheduled for
o ’ compietion in 1987.
o STARS Program Relationship The last phase will explore expert sys-
j The Vise Project addresses two major tems technology for data structure selection
Yo~ goals of the STARS program: It provides and the use of better natural language recog-
;) software life-cycle support as desired by the nition techniques in design note recognition.
o Software Engineering Environment (SEE)
;‘ .\< portion of STARS, and also meets the References ;
,, requirements for portable and reusable

software parts as specified by the Applications (Aror85) Arora, A.K., Chan D., Ferrans,
Y segment. J.C., and Gordon, R. "An overview of the

) ﬁ'& An ADT-based library architecture is Vise M 's; al soc:'.twaremdggelgpmem ;;'v'{;‘;,"-'
X J well-suited to the goal of similar applications, mem,lL ;occ;eomgs 1985 om%s:: 4-;1 r
Ej allows parametric refinement of parts, and C-50r ' -11 October » PP. 304-4718.
0 supports parts composition. Libraries can run
® the gamut between generically useful and (Reis84) Reiss, S.P. "Graphical program
) application- or user-specific. = Software deveiopment with PECAN program develop-
s developers working on an application (e.g., ment systems,” SIGPLAN Notices, 19, 5,
“,: signal processing, avionics, missile control, (May 1984), pp. 30-41.
"’y navigation) often use a particular model . .
Mnd when designing systems. The availability of "(Te‘°77) Teichroew, D. and Hershey, E.A.,
“‘ software parts corresponding to the model PSL/PSA: a computer-aided technique for
7 T increases productivity. structured documentation and an'z'alysm of
A ﬂ v M" information processing systems,” IEEE
The Visual Programming Project also Transactions on Software Engineering, 3. 1,
“’ has under its umbrella a domain specific (January, 1977), pp. 41-48.
)
o
° 3
i

A
e

] v

N s A X
B‘.')

L) OUIO
‘;’!‘,"‘l’u’lqt“.i,’l!: aQ’

Y

.";.i"-,

(U TUE T B N P PN S R P P IR P U
SN o el Tt e e e N

A PROTOTYPE SYSTEM TO AUTOMATE THE
QUALIFICATION OF SOFTWARE FOR USE
IN A REUSABLE SOFTWARE INVENTORY SYSTEM

F.C. Blumberg III
C.T. Shotton, Jr.
T. Zyla

Planning Research Corporation
1500 Planning Research Drive
McLean, Virginia 22102

March 6, 1986

Abstract

In the software engineering environment of the 1980’s, the reusability of software is expected to

be a prime factor influencing the productivity of sofiware development organizations.

This paper

discusses a prototype system developed at Planning Research Corporation used to demonstrate the
Sfeasibility of determining the reusability of sofiware which was not originally designed for reuse.

Introduction

Under constant pressure to produce
computerized systems of ever increasing size
and complexity, most large organizations
engaged in software development are forced
to continuously find ways to improve produc-
tivity. In today’s environment, a software
development organization of any size usually
controls thousands upon thousands of lines
of diverse software, most of which was not
explicitly designed for reuse. Significant time
and cost savings can be realized in most
organizations if an effective means to reuse
this software can be developed. Clearly,
some pieces of this software can, in practice,
be reused in applications and systems not
originally envisioned by their designers. The
heart of the problem lies in finding an
efficient way to identify and select the poten-
tially reusable software.

The Prototype Project

In order to gain a better understanding
of how to exploit the potential of this body of
software, Planning Research Corporation
decided to pursue the ue¢velopment of a pro-
totype system to qualify software for use in a
reusable software inventory system. During
the deveiopment of the prototype, it was

4
D)

shown through internal projects within the
Productivity Products Group at Planning
Research Corporation, that systems on the
order of 30K+ lines of code can achieve re-
usability rates in excess of 60%, even if the
reused software was not originally designed
and implemented for reuse. I[dentifying and
extracting the reused pieces of software from
their original libraries was a labor intensive
and time-consuming process which s
intended to be automated by the prototype.

The development of the prototype
qualification system has also demonstrated
that the benefits of large-scale reuse can be
magnified by integrating the software reuse
qualification process into a SEE (software
engineering environment). The interactive
screens, user commands, flow of data, imple-
mentation techniques, and database storage
techniques used in the prototype system are,
by design, consistent with Planning Research
Corporation’s APCE (Automated Product

Control Environment) product, the
corporation’s standard software engineering
environment. Extending the APCE to

include an automated reusable software
qualification process is a simple task which
allows software reuse to occur in an orga-
nized and disciplined fashion.

A ST AR P ML T AL LI i G2 NP AT P P PPN T
R IO NI AR KA R K R U USROG A

LN

CATNNN

(R XEN

*
v

f."’-"".‘d‘o'.-',
e TR LN
—\.il. L o

R'!'

4
B Y 0 CAXONTR Lo L D
¢ .:'i ol l’ Tt n'i?u ECN) u'l?ﬁ’l':' = .:'IA LX) l.:".‘:"..:'iu tfa'l!

At the beginning of the prototype
development project, it was decided that the

prototype should exhibit the following

characteristics:

0 It should be able to qualify software not
explicitly designed for reuse, as well as
software explicitly designed for reuse.

o It should not be tied to a specific computer
language; it should be able to accept "raw"
input software written in many different
source languages. Although Ada is without a
doubt the language of choice for future
development, there is a large body of
software written in other languages that can
be effectively reused.

o The qualification process should be adapt-
able so that the qualification criteria can be
adjusted as more is learned about the charac-
teristics of reusable software.

o Software accepted into the reusable inven-
tory by the qualification process should be
classified and stored so that it can later be
retrieved by its attributes, and it must be
stored in a manner compatible and consistent
with an organization’s SEE or software fac-
tory system.

The prototype design consists of three
major subsystems: the Analyzer Subsystem,
the Qualification Subsystem, and the Interro-
gation Subsystem. Data flows through the
prototype from the Analyzer Subsystem,
where "raw” input software is inspected, to
the Qualification Subsystem, which makes
decisions based upon the analysis of the "raw"
input software, to the Interrogation Subsys-
temn, which is used to retrieve selected piece.
of software stored in the reusable inventory.

The Analyzer Subsystem

A block diagram of the Analyzer Sub-
system is presented in Figure 1. "Raw” input
software can be analyzed whether or not it
was explicitly designed for reuse. The
Analyzer Subsystem determines the source
language of the “raw” input software and,
through the use of a grammar for the source
language, develops metric data from the
input. If the "raw" input is a large piece of
software, for example an entire application
program, the Analyzer Subsystem breaks
down the input into smaller pieces and

3 memiv-"]

records the relationships between the pieces.

Because the Analyzer Subsystem is con-
structed so that it is driven by a specific
grammar file for the "raw" input software, it
is flexible and can accommodate a wide
variety of source languages. The prototype
system has been demonstrated to be capable
of processing both Ada PDL and PASCAL
input software. The estimated level of effort
required to extend the language processing
capabilities of the prototype is on the order of
a few man-weeks.

The Qualification Subsystem

At the time the prototype was
developed, it was felt that the decision mak-
ing process required to qualify "raw" input
software for reuse was not fully understood.
Casting the decision making process into a
complex, and difficuit to change program was
not an acceptable or practical approach to the
problem. It was obvious that the prototype
had to include Al techniques to avoid re-
compiling or re-linking major pieces of the
prototype for each change to the qualification
decision making process.

Figure 2 is an overview of the flow of
data through the prowtype’s Qualification
Subsystem. Metric data, information about
the relationships found in the "raw" input
software, and some user-supplied text data
are sent through a qualification process con-
trolled oy a Planning Research Corporation
developed Al module called GEM (Generic
Expert Module).

GEM is used to apply a set of
qualification rules against the metric and rela-
tional data supplied by the Analyzer Subsys-
tem. GEM determines whether a piece of
"raw” input software is qualified to be stored
in the reusable software inventory. As the
dynamics of qualifying "raw" input software
come into better focus, the rule base can be
easily modified with re-compiling or re-
linking any software in the entire prototype
system.

Rules on the rule base file are written
in straight-forward English-like constructs,
and are interpreted dynamically at run-time
by the GEM,Al module. GEM has powerful
logical operators that aillow rules to be

o

£

; ST R Tl (T (T P T T vy
Jl‘.!"‘!" &l’cﬁ’?‘.‘!'.‘.’c‘?‘n ,‘s‘&i‘!':‘a’t‘!h.‘ n R :'c'.!‘) "s !’ﬁ‘!’t‘!’:‘!?}.!'m&‘?"’2"0"!02','""Of‘?le‘.'cz'

«t e,

> N
RO
- A A
~*

By 2
0 Nl S
A
& \l,‘.

1, 1,1,
 FAL,

o
peee

L]
L5,

™4,

sy g 2
P
LA T

@

LA

e

-
R

a
()
.

PaliS N

.1":'. [y

N B Nl N
LI

52

- -

Lot

>
3

¢

<. 1,;,-“\/‘\
-

DA z"é . ‘:.’:.‘!‘t:h.'l e,

developed that can accommodate a wide
range of input software sizes and source
languages. In addition to logical operators,
GEM has computational features which allow
a rule base to be developed that can calculate

arbitrarily defined values such as portability

factors, logical compiexity factors, and inter-
face complexity factors.

As an additional means to cope with the
dynamics of its decision making process, the
Qualification Subsystem has interactive
screens which allow a user of the prototype
to review decisions made as a result of apply-
ing the rule base to the Analyzer Subsystem’s
data. Numerical and relational data produced
by the Analyzer Subsystem relative to any
particular piece of "raw" input software can be
displayed on command, as well as
qualification decisions made by GEM. A
simple command from an interactive screen
can be used to override any automated deci-
sion.

As pieces of "raw” input software are
accepted by the Qualification Subsystem, they
are stored in the reusable inventory along
with numerical and relational data produced
by the Analyzer Subsystem. The Interroga-
tion Subsystem of the prototype can be used
to select the stored pieces of software based
upon various attributes, and can be used to
display numerical and relational data.

Reuse and Development Standards

An unexpected use of the prototype
system surfaced after its development. [t was

g

realized that the prototype system’s rule
based could easily be modified to enable the
prototype to be used as a fast and highly
efficient IV&V tool. With a rule base that
reflects an organization’s fundamental
software development standards (for exam-
ple, number of lines per module, amount of
comments, overall complexity per module,
etc.) the prototype system could be employed
to automate first level software inspections or
walkthroughs which have traditionally been
performed manually.

Conclusions

A number of things were learned dur-
ing the development of the prototype.

o Reusability in excess of 60% can be
achieved, even when the reused software was
not intended for reuse.

o Large-scale software use is best carried out
as an integrated function of a SEE.

0 A reusability system need not be tied to a
specific source language

o Some of the problems of automating
software development standards inspection
and identifying reusable software are simiiar.

o Finally, Al tools and techniques can be
applied in harmony with conventional
software to attack ill-defined and compiex
probiems frequently encountered in the
development of automated software
engineering environment systems.

‘; ‘C . éi?\ ‘ ‘ :‘- o, Q.J':?";. l",l .’nv 'o. ! . .' J':?: !\‘!‘\';.ﬂ 1 ﬁ il \Q» '!.Q',. \‘.‘.!‘l’!‘l‘- \“

o RAW® INPUT
SOFTWARE SOURCE CODE

GRAMMAR

-,-,ﬂ
CJ
R
<
A

2 K}
¥

ANALYZER
> SUBSYSTEM

. "%"‘-vup -
L LS

_a A

N)) K ¥
oy COMPONENT COMPONENT COMPONENT COMPONENT
N METRICS SOURCE CODE RELATIONSHIPS ATTRIBUTES

) Figure 1. Analyzer Subsystem Block Diagram

o ‘&q
‘ A -
3

DA : o ALY Ar ey . R ‘ U g g I P CE I R
B R R A R G R iiratietiolndialnd Gl ala e TR et

e ._;
i
| el -

-
o
,’-.

o
ot
-

.¢-
&
G
“.

Porh
..
e

P

R XX KN
- SRR RS

USER SUPPLIED Al e

METRICS RELATIONSHIPS ATTRIBUTES RULE BASE

l I l
|

Y x.J -:-‘

o ok
o
Pl bl o'y

=

P
'&
—]

Ay
o

P
XIXIET D

o=

QUALIFICATION
SUBSYSTEM

Fie oy] ;d .

i iy T

N Y

¢
T

X X

£

E

e.
| l ! *

REJECTED QUALIFIED DEFERRED ,
COMPONENTS COMPONENTS COMPONENTS

0 Figure 2. Qualification Subsystem Block Diagram

> 'L)F'""":A"‘

AT

" N . . IR UG AT L W s A ARG SOOI b ST
9,’5.'-1.*. . !"’g’!:.'.l A |'.,’1 n‘:"..:"..g_'..) ! ML s ’!'l) l’-‘:‘- !‘t 9, t‘!’t'a”l t,.l A.‘A'!h!'l »-'I’n “"l‘p"ﬂ- St ‘-’0‘: L UL

= ~

A% X.- NIRO 0L
e e s Rl Ty

5
.

- ot 4
l'l]l 'l /
A x A

AT

W\

-
Lo 0

NS
Y

-}"q.v i
P ot

e

za @

255
i Yo Ty

a2

A Prototype System to Automate the

AN a e 040 DAY
ettt RO OGO

Qualification of Software for Use

LA ‘.

Reusable Software Inventory System
March 1986

ina

ARIUOHIN OO0
,‘.‘-'\‘.~“'ﬁ!l‘cfl‘n‘,!’n."‘!‘.l‘n.l‘l&'ﬂ“’

v by

O LA ALANN
* PRI LI,

R4S

’d
‘\‘ » |

&5)

LW O
QOCAIY

e

» .
AW)y §
'?.q.lfq) q‘l‘«'l Q”,Q".

o

t of the 1980's

e,

S~

The Software Environmen

0 £y, 0% Co 194N
.’\‘.-.l‘!‘l':!t.:nﬂ’,'l’. 1‘!’0

» Computerized systems continuing to increase in

s ¥ ‘-?l";‘!’
AX RN

complexity

OG0

X s N
QORANTERERN

LK KR

» Huge volumes of software under control of software

development organizations

11

« Constant pressure to increase software development

1,0
AR KR

productivity

XY X}

-‘.IJ).

RPN L aA- . aat AV e A s BAN §u BN Ba< i

Y

Ty, B

e »':'o
59 4 AN,

et Y
- {o,o

-
-
15T

®
ects
lly designed and implemented

rates in excess of 60% have been achieved
time-consuming

th software not origina

for reuse
from their original libraries is labor-intensive and
)

wi

Reusability
. |dentifying and extracting reused pieces of software

Experience With Internal Pro

‘I." ‘q'::\'
§y'.8

12

“5
RSOV RO AU TN HIRES (4 A GOGHEOOUTR ROOUA
e W e e e Sttt ety SUNCRK NN R,'s‘jm'bf.'fﬂ;’,nf.‘n‘,,‘_ifdl’s‘!',n*,"lL,*A‘:g“afq',tas‘Af,sf‘_\a,'_i,a‘?ﬁ;ﬁﬂ:f‘ DA LEONMS

X GRS
R LAY SN PPR

THE
PROTOTYPE

X (ORI RO MO0 b St STy Tt)
x‘.)'.a tog! aWoneal ‘“a’*‘ .,e‘, x\,h ggi‘llnl‘ub" ‘9; REXANOE0, a‘;'n‘,"f’;fé’ufﬁ.ﬁ:’-.'fr'«" b

engineering environmen

it can later be retrieved by attributes

reuse
which can be adjusted dynamically

« Ability to qualify software not explicitly designed for

* Not based upon a specific source language

» Adaptable qualification decision making process

» Software accepted by the prototype stored so that

« Compatible with APCE, lt?’RC's standard software
»

oy
,i..‘
g’! .
L) ".
"‘_hl
o
R

t

A |) v - y

T e W SAAOENT SAARAISIN LK BMIUCRS OO ANNONGOL NGRS LRSS
LA O A\ g d p A AV) geat | NN ; \ ! U [f KE

i (-") e '-""' ,f, ',A""e"“"r?,'ki““".i’: T" """'.‘T*t R M "f' ?5“*%‘\:’0"’"’ "i"r?u&: v i v"!?':‘ﬁ)'-!*"til"(‘dtt‘."fﬁ "'tqtl‘t‘i“t"-"av . ".')‘-\'l i‘:"t*‘.'t""?‘x;a“'!’f‘f iy ;E";. ‘.4{““5%“51»"

Y

D
IO

'y

iR}

LN
£

Subsystem Data Flow

Wt
SR

NIAL
LR T

LE3

K]
LI

‘.71“

]

ANALYZER

[RRTS ¥ G20 A,
Bk Lp)
MR IS

EYWINS:
!33‘271‘11

QUALIFICATION

INTERROGATION

MSAADAGH
“l',fi’,/,kg,.ﬂv.'

15

BRGSO,
Ay PR T Ny

G

e

A

3
¥y

PR

THE
ANALYZER
SUBSYSTEM

Plenning Rosesrch Corporalion

[A, 4, ¢,c 1
‘ull‘a?'}’r"ﬁﬂﬂ.?h,‘A'I"’l‘:‘_"l

O RN TR MR TUN R T U AR M NI AT AT
R O AT R TSI XS MR ML U A OUER AR SO O R,

 Driven by grammar developed for the "raw" input

source language

 Flexible - subsystem can easily be extended by

adding new grammars

Has been demonstrated with:

« AdaPDL
« PASCAL

Lot

2
*

[

7}

Lot
5y @

L
e
; K S

PR
»'-'%
""P-,

BREAKDOWN OF "RAW" IN

——

———s—

PUT SOFTWARE

S

X A I G

PROGRAM

............... T

COMPONENTS

SUBPROGRAM
COMPONENTS

|

"RAW" INPUT

SOFTWARE
PRODUCES

18

MODULE
COMPONENTS

Slasning Reseereh Cosperation

——

0
.

a

PR ICAN R IO MM UMM IICICAN PN T, AR AP TICA DR DSSOAEALSHAINDNINE
0y “ﬁ’:'n‘.'a".'z"." ‘/\".%“_'0‘;’!’??5' v?'ﬂ«'A’a?i“»"«’u’l";ﬁt"afl‘»‘,i’s’*e‘{?f’;ﬁ“ “‘19_,3‘;1"_»‘\?'3\;"‘““",‘,f;’.flx"ﬁ":‘?ggi,fg’a;ﬁ, 5:‘7{‘#'2‘?,{,8‘94,"‘%_,?W Fe e et L

o,

S
-
-
;-.
.
@.

. - 2
54 nn.--n-.«‘

5 N - ».

- > g

A

SOURCECODE
GRAMMAR
!
{
J [RELATIONSHIPQ L

4, SR

SUBSYSTEM
!

y
ANALYZER

e R
Analyvzer Subsystem Data Flow
INPU
SOFTWARE
Y
)
OCOMPONENT
SOURCECODE

() (

s
R

@ 19

OGN OGOICUAUIC O i
‘-5:0“‘?5\':."*‘5.1“9:‘3“:,’ﬁ‘a’(’e.-’-‘l.l’&;l‘a"i‘q At A‘L‘A'\IA’:) PO P A

ATE R woe AT 80 3R ATy AV 47p 48, Y IOOCHON R BOEE AT D0
A R e A R O

L

THE
QUALIFICATION
SUBSYSTEM

5. L3N) 3
s ’4,1 t.t‘t.i,l’sii.p'l OO ,‘! n"a 'u"h‘,.*i" N \ .“l’ .1, ¥ ,‘,:, 30‘ ,:,“v. ,c‘ .n ‘s. .ow.ﬁ! g A Aty ,Q ;'u‘ﬂ,"»

’1l)'10

Jasn adAj0joid 0} sjqejreae
SPUBWIWOD 8PLIIBAO PUB SUBBIOS MBINDI BAIJORIBIUI SBH

YOOI AN O K TR TR
Lt ot e bl el

9Jem}jos Jo saodald payijenb sbojeie)

¢
)

a1emyos |y (W3D) ainpoy Wadx3
o1BuUaY) s,uoiesodio) yareasay Buiuueld sazinn

™
}‘
-
-
~¥
-
ot
~
o)
-
a s
-
‘\'ﬂ
-
S
oo
e
.-
13
o

[
Y]
!\'!.u'

;g’;‘fl

0
".’ #

SU0ISIoap uonedyiienb
ayew o} walsAsqng 19zAjeuy oy} woly ejep jeuone|sl
pue oulaw Jsurebe sojni ayij-ysiibug sanddy

R

MIIAIBAQ WIBISASGNS uonedljijen

- OA0B0 O OH0H00
s*'é’if "t‘“ Wi o‘.. .Of‘ﬂ‘..o5‘.\"‘?‘("!‘1”"«1"1\‘)

4ty 0 J 25
BAAOROACHD O
I AU LI AN Y

. ror_u_s ¥ - . - - o o © 2t .
e S I XS0 S Y LA A I K X W P S o SIS o e ST] OLEFR LA @ po

Process for Qualification

ing

Mak

ision

as more is learned about qualifying software

» Avoids developing complex and difficult
to change programs

« Not fully understood at time of prototype development
« Allows decision ruies to be quickly changed

n
o)
=
g
c
i
Q
)
L —]
<
)
=
n
=
o
O
P
c
)
e
L)
Q.
E
-a
O
(a8
[]

The Dec

L)
RONONOIONGINAEA000 ONOOCERTONGO0N0N0O0NG ONOSIGUNN0 BOUAGO0IGE00 ANAAOAOA B AOAOGONON0NGN0
o, l‘f"l'.,.q's’l‘f'l.t,‘l't‘!‘5)!3‘,‘95‘1.:‘l".'!‘:)l“‘5'1‘4‘?‘ﬁ’f‘",‘]’!‘l’i‘l’!‘&’!“‘f‘n,‘?,‘;'!"‘d"&‘~“i't‘n’.?‘l‘g‘d‘,.l‘fih*’Qﬂ? ENENO X 'n’e"\g.f‘?ﬁ’xf&\"Qa"~~l’”‘o‘.§k'\'?'q".‘¢i?.,\'!';’,“,."',,‘}’r_‘.'\;‘,‘j'pq

£

English-like constructs
rules to not have to be compiled or linked into program

« Driven by rule base file written with straight-forward
« Dynamically interprets rules during program execution -

£
Generic Expert Module Features

 Has powerful logical operators
 has computational capabilities

o 23

h g \ WG 5 AAGAGANON] O ; ASRY OX IO IO
R R R R A A Lo A A s SO OO GRS AR R SRR RO

GILaADOY MOR SI SNIVLIS S, LNINOJNOD
*N3HL

Py < XIITIGAVSOAXY S, INANOANOD
0S > XLIXTTIAWOD 4I S, INANOANOD
09 < XLITIAVIMOZ $,ININOANOD

G3L43AIOY SI ILVIS ONYT S,ININOANOD
:30 TTVY

o § ¢

01 + XIITIGYSOXY B ,ININOIMOD MON SI XLITIGUVSOAIY §,LNINOAROD
N3HL

ana
01

> (1 + S3007T ON S,ININCAN0D) / (00T » SINVISNOD HLIM SJOOT ON S.ININOANOD)
NVYO0Md SI 3dXI §,INIAKOINOD

140 TTY

e {

X

m

o \%h 12, -] .. o I u‘.fn*u X XX] ol % Yy . ~ ot l-l“% -J- K
N 5 I o R SR @ i T R e I P L ef T TR,

LI Y

] S

a
'S

o @S

24

A,

- -
ot
Tt Y

s
- - e

e
QUALIFICATION
RULE BASE

tRess
[3

IBUTES
!

USER
ATTR

QUALJFICATION
SUBSYSTEM

?
4
%

=

T O ~
2 ELEELL,

S
o 3]
)

" .

-
-
-
-

A

OOMPONENT
ELATIONSHI
J .

"
- %
X

‘s
a.

)
@
}' 2
"
»

XE
=

carge
!

25

\ ' " (W g 0 (T 5 " BTN SONOAON0 OO0 OO0 HRORGO0GSE
i!:..l','a.t',n !n.!"-‘.l‘afl',ﬂl_n.|',|‘."¢:l“\l‘.‘.l',gglft..|',|!"g.‘ﬁ'n"‘n"’u.l‘uf'!'c‘.i'n."‘,o o\ .‘!Q:'!l‘.‘?l!‘.,ﬁt‘?'-".’l«'?!'_-"’,-“q‘,‘!;‘!G".‘h‘h“‘!s‘!ﬁ .'?n,.’?h‘?v .‘!Q.‘!O;'E‘n-‘!ﬂ‘?h‘ PODOMAOOOUKSS

-,‘,ﬁﬁ
o P By Fe

= ey P -
. TN
C \.JL—-:. lflfkf’:. Sl

o
Leb IR 4

THE
INTERROGATION
SUBSYSTEM

26

R

BN
¢

B

(OO O MMOOE OO IO Y O/) ; ! UM AL XL O J D Tt
RO R R IR N NS S R LR T AN BT R A B A OTN I W ORI D SN AT OO T RN A

8w . nfal Cub P TR RN
e en 2o wTa e g Aty T e UNF AATLAURFURS | 7L R PR I
ity ;'k::g""%‘v%‘xq‘ﬁfv’vgt'='i'?f§'§'t,7l|"zv" Ve

PRl
oo ot
09:15 HRS

==mt 4 ATTCOQF PROTOTYPE®*»

X
COMPONENT SYSTEM

Analyzer Subsystea
Qualification Subsystem
Interrogation Subsystem

MAIN SYSTEM MENU
INTE
EXIT

X3
AUTOMATED REUSABLE
3
1. ALYZ
2. QUAL
3.
0.

Enter Menu Choice.

Command

.
-
PS

S
21 Marxch 1986

Py

e A

f

y o8 '..' $7%90 l' f 't‘ l.l"‘t A’Q._‘l.q‘.‘_‘ DGR P 8 C T VR0,

ot oy

" }‘h-
DAGAON
RN

et ‘gié
¢ ",*n
L)

S I A T T A) C A R
AR A A AR UL OO U SONT RN AT SN A PR LW DT :
el n*liyﬁ'p‘i‘t‘é‘!.. ORI g e S e BONONNNUNONIAT

0] het |
-3] -«
= = ‘,‘.
s i
2 ; 5
a 0
2 i B
h o
" =
1 o
: :
0 3 =
2 o
u 3
™
) «
- < :
Dy N
- & a
22 : 3
w s t s
; g 3
-
-] 2 2
[g 1
28 38
1 v
o >
S a as
0
Yz K
=n an
2 u
¥
55 o 124
a & & X
=; g‘ Wl .
g!—‘
B e 8 .
B - o~ o
<
®
9
-d
A
e Sk '
a 2 <
ot -1
3 s |
§ 1 §
S i
ot i WO _

o

LI PN PC TN

%)
-4
=
°
o~

.
.

09

21 Maxch 1986

AUTOMATED REUSABLE COMPONENT SYSTEM

CIIORS

Vo by

INTERROGATION SUBSYSTEM

1 L] ¥y
W bt e e

ATTRIBUTE

SELECT BY

(2 1]

SELECTION

ATTRIBUTE

L 2 3]

#;r)

SUBPROGRAM

Class

Dy
i

PASCAL
NAVELEX

HONEYWELL L66
GCOS-III

Language:
Manufactuer:

Target Hardware
Operating System

R p PPN ROADARRYIATN O
AR i LR e I R

v

-
.

General Punction

PARSING

crmmm= #2aTTCQF PROTOTYPE***

or EXIT

==

GO, BACK, QUIT,

GO

*ENTER

Command

Puaaing Recsarch Corpasation

IIIOEA RN e
_.?f&";,}'.r NN -./-.'afl'g__'l

28 HRS

09

mxznsssszt 8 ATTCQF PROTOTYPE*2#

COMPONENMNTS s

SELECT BY ATTRIBUTE
AR A S EE R R R R R N R R SRR EEEEEERSES=

4% S ELECTED
or EXIT

INTERROGATION SUBSYSTEM

AUYTOMATED REUSABLE COMPONENT SYSTEM

RULE APPLIES

Description

AN_ADD1
FIND_SYM

SAW_SYM

000066 DOMP_ SYM
00006A SYNTHESIZE
00006C NEXTCH
00006D MNEXTSYM

Ip
000060
000069
00007B PARSE

000064

000065
NEXT, TOP,KEY, SELE, QUIT,

K 66

ENMD OF SELECTED COMPONENTS

o
-
21 Maxch 1986

SENTER
Command

I 3,0 0 0 0 g X oy T by TSN\ AN T Pt . _
,.‘,"“,-}AGHT"Q?"""|.:!-'ly-y‘!‘q_i"“_.“ Pt "’0’1..3'»,1!':.“'-'(iv’l"v’i" ‘5-?‘9‘-.!"-‘.i’!.‘l’l‘!’!b‘uqngdfs : f("?""!""‘. aﬁ"\flﬂ'qh? '.'"v-‘ﬁp.’&gﬁ5'4?3",7?0&&_*9%*0".'1%

P R

AWy

DRSO
.‘A‘qgl"g' ‘4\.:‘.‘

—
J»“”

woneseder) wriveosey Supmunyy

+ IR0
jg"'gt, v ?5“'«.‘

v 8y
U

[y
A

V1AM :@puewmo)
LIXZ'LIND ‘AVWON’LSIT 'YVIAYE ‘MIAN‘MILY -~ YAINIs
vy 3 AAXLOLO¥Md J0DLLewy== PRy —— == -

RIANLICOLALI A 4
'ﬁ‘k‘f““i‘\-‘s‘r‘—t‘c'tc?!n,ih

»

N
V“

i
C.‘!

NXS anna
:uoyadyaoseqg

vy '
CARO
" 141'!4

(8

I

ONISUVYa
:uoy3IduUng yTeIeuey

DALY
d k»”\‘.'—'l'

Y
.n.u‘

o

III-5009 :we3skg Buyjexedp
99T TTTAMXANOH :exempxey 3Jobawey
XTTAAYN IenjDeInuen
TOsva :ebenbuey
ax1aITend :ejwlg
NYE90%adns :sseyd 990000 :4a1I 3Jusuodwo)d

S

-
e
(2

Tre

1.

sy S A I N €I VL IY LI NANOANOD wws

ALAIVNIIY X9 103138
RAISXSEANS NOILIYOOUWIALINI
NILSXS INAROAHOD ATAVSNIM AIALYHOLNY

S¥H 1€:60 9861 WoOIeN 127

QAR

DAOAD)
“‘,i"g\l‘fq%l&.‘.ﬂ

DAURROLUND
A

3t
5

% & &

oY RASENG
Conabt ety

. — B -y] S o T et eV e we Tes, - b - - - -
e e, IREEFRRF TR nRrre, | LAEELt O, 2 LLEASLTNNNS 5 o555 5 MV I LA A0 @ Poole o] @ P ZATIH O R
Rttt ki - L L i “ e

WETW PCEETY WP W BT W S WY W ey e —

«\
) -
W

[

™

0
40
50
60

0

0

0

1

:
09
100

-
.
.
.
-
.
.
.
.
-
.
.
.
.
.
.

3
4
5
9

Metric
Metric
Metric
Metric
Metric
Metric 10

R RN SRR E R EERE S SR
Metric
Metric

METRTICS S #a
sk AATTCQF PROTOTYPE®*s

SUBPROGRAM
PASCAL

Class
Language
0
0
1
0
0
0
0

__45

ATTRIBUTE

1
2

Metrxic
Metric

SELECT BY
Freq of Use
Reusability
Portability

Intexface Cmpx

Loops with k

INTERROGATION SUBSYSTEM
Array Ref w/ k

ATTR,METR, RELA, LIST, MORE, QUIT, EXIT

RELA

%
AUTOMATED REUSABLE COMPONENT SYSTEM
A2 COMPONENT

QUALIFIED
)

000066
1
1
19
0
2
0
2

i
k3

-

.

.
.
H

—

Statements
DO Statements
Coaments/Total

State
Exits
Lines of Code:
Extexnal Refs

ir

v
Returns

-
L

Coaponent ID

- o

.
.

Calling Params

.-".

[l el 2l 2l)

21 Marxch 1986

SENTER
Command
!

-
-

(] ¥ L N Al o T PENLIM) § P 3 . Y3 ¥ 1) () U
T R e N S e, R At B e R e ol ittt ittt dnimtitintatin e

HRS

SRR
234

09

T
T

Lines
of Code

SUBPROGRAM
PASCAL

Parameters

Class

-
o
Lt 2 T+ 3t 3 3 323t ¢+ 3 F 3+ 31 - F F+ ¥ ¥ F F ¥ F £ X%+ ¥ 1% £ 3
Language
No.

RELATIONSHTIZPS asa
zessccssressxsst AATTCOF PROTOTYPEA**

Type

SELECT BY ATTRIBUTE

“s4a COMPONENT
MODULE

INTERROGATION SUBSYSTEM
Class

o
AUTOMATED REUSABLE COMPONENT SYSTEM

QUALIFIED

000066

Referenced
Component
000067

State
ATTR,METR, RELA, LIST, NORE, QUIT, EXIT

ATTR

Component ID

21 Maxch 1986

*ENTER
Command
!

33

”““‘i‘f‘li X
AT, ¢
A e 8,

2N T, ARG OCSOHCHOA0N 65y Nty 0S80 43,0 A A R e 0
nedmnadsinistantthaelnidalegulaishuaniintaiadatnt i natintint sl gttt e et st it

Py
’\“'r
.-.”

A A

bt o x4
B

@,
RO O AOROBOGOOUNGIBONOGENONT
Lttty It et T s

Conclusions

 Reusability rates in excess of 60% can be achieved in

some cases, even if the reused software was not

designed for reuse

« Identifying reusable software is labor-intensive and is

is best carried out as an integrated function of an

automated SEE

« A reusability system need not be tied to a specific

source language

- Some aspects of automating software reuse, enforcing

software development standards, and automating

IV&V functions are similar

BN OO OO IO SOOI IO MO OO WO OO0 ORND QOO0
Y ;‘,.";f.'-\‘.",‘.‘.‘i;“z’n‘..'n’,"‘."."~"4"...":'“"‘1‘,,‘&'%‘J.‘,."a‘.‘\.:’n‘('l ,'ﬁ‘.ﬁ?a*h‘.‘l‘ »elh.t‘-‘\‘:,'bi:°b.t‘c.:.5;‘:'5.. ‘-‘.'M?m“'n"’r-"»"-.»‘

»
IROUOLN A
KRNI Tt

1% 4

AT

!

llq- \%,

Conclusions (continued)

30

O

ot

4

l..‘

]

W

« Al tools and techniques can be applied in harmony

with "cenventional” software when attacking problems

35

tomated SEEs

Inau

y T
DU

Ty 0V 0y 1Yy ¢
L) ’-,!“;‘7_‘&“!.;

L)

3

(HOD

o

N
N T

23

AT Ty Ty
RO IO

INFORMATION THEORY AND SOFTWARE REUSE

Rodney M. Bond

ARINC Research Corporation
2551 Riva Road
Annapolis, Maryland 21401

Abstract

In this paper a paradigm for software reusability currently being researched is reviewed. A gen-
eral discussion of information theory is presented followed by a short discussion of software testing
concepts. Dependency analysis is then presented as a possible approach to unifving these two fields.
Possible paradigms for dependency analysis are then proposed along with some anticipated problems.
Finally, a summary is given which identifies related fields 10 which this research might be applied.

Information Theory

Information theory research started in
the 1920’s in support of a need to model
communication systems. The basic
mathematical concepts used today were
derived by the late 1940’s by mathematicians
including N. Wiener and C. Shannon. Infor-
mation theory proposes to answer a question
attributed to U.S. political scientist Harold D.
Laswell(1), "Who says what to whom with
what effect?” In attempting to answer this
question, one activity included the develop-
ment of a quantitative theory of information
measure(2). Though not the only model,
nor a universally accepted model, one theory
measures "usefulness” of information based
on three metrics: entropy, self-information,
and probability. Entropy, H(®), in informa-
tion theory is a measure of the uncertainty
associated with a message source. Self-
information, I(®) is a measure of the infor-
mation contained in a particular variable, x;
and probability is a measure of the chance
occurrence of the i(th) variabie, p(x;). These
three measures are related by the equation:

Ell(x)] = H(X) =

Zp(x)I(x;) = —Lp(x;) log (p(xy))

where the summations are over "M" unique
symbois, E[®] is the expected value tuaction,
and X is a random variable. When M = 2,
where the symbols might be represented by
{0.1], or [true,falsel, or some other mutually

DU P M A MM TIPS T M PO NN PO A
.ﬂ\"wi‘ 9'125".»!"34‘ f’.;"fa".‘.n’ﬁ“'*t AT

ML I PN A WA S O B RIS
At i, ’;%f.’ s',‘g'e"a,""‘t‘ ,

exclusive and exhaustive pair of values, the
equation has a maroman ximum value at
p(x;) = 0.5. Hence the maximum entropy,
or unknown information, for a binary alpha-
bet system occurs when there is an equal
chance of something happening, e.g. being
true or false.

Software Testing

During the fault isolation process of
software testing an attempt is being made to
obtain information through tests, specifically
the identification of a “faulty” component.
Obviously the meaning, amount, and scope
of the available information has to be con-
sidered in order to achieve identification. If
we limit ourseives to a binary scope of infor-
mation, such that there are only two possible
values for the information sought, i.e. an M
= 2 alphabet, we may arbitrarily choose the
alphabet to consist of the svmbols
[good,bad]. We can now associate a meaning
to these symbols. In this paper "good" and
"bad" wiil be used to mean the result(s) of a
test, with no other resuits possible. Now that
the meaning and scope of the information to
be gathered has been defined, the amount of
the information to be gained from a test
must be determined.

There is a significant variation in the
amount of information that may be acquired
from a test. Suppose that there is a software
program with "X" inputs, "Y" modules, and
"Z" outputs as components. We wili also
assume that the inputs must somehow be

TRt R R St ke ROy S 8y
FRAOGOOR PACIOL RACKOOAR X KPR

«4!'- ”?

st

s

?

- n g
AL 20

.\.:'

d

e - - - - ",
Ay

* >
e
v
3

Pt
b

[

'
. _l _' .

-~

5
o

v
bt Sty
TRIRN

-
s

5

[

R L
| & _'
LA LAY L AN

L ®

-

generated, and the outputs evaluated. If all
inputs, modules, and outputs were intercon-
nected, an exhaustive test set would include
on an orvder of magnitude X*Y*Z* tests. If
we were to analyze this system to isolate an
error, and assuming a single fault, we might
start by testing an input. If the test was
good, we would have very little information
gain, only the knowledge that the one input
was good. However, if the test was bad we
would have isolated the error. Conversely, a
good output test would tell us that ail com-
ponents feeding the output were good,
whereas a bad output test would tel! us only
that one of the componants feeding the out-
put were bad. The information gain from the
good output test is of more value since it
identifies the status of more of the com-
ponents.

Thus it appears that information gain is
maximized with bad tests near the input and
good test near the output. However, since
the outcome of a test cannot be ascertained
prior to the test, current strategies for deter-
mining the order in which the tests are to be
performed include random selection, from
outpuis toward inputs, and from inputs
toward outputs. Information theory can be
used to generate a more reasonable strategy.
From information theory we know that the
maximum entropy occurs in our binary alpha-
bet when the probabilities of "good" and
"bad" are c<gual. Selection of the test with
maximum entropy will piovide an answer to
the mcest "unknown" information possible
from 2 single test. Hence our strategy should
be to choose a test that gives the most nearly
equal information gain, regardless of the out-
come, eliminating the most entropy from the
analysis. It can be shown that this strategy
approaches the theoretical limit of eliminating
half of the components from consideration
with each test(3).

Dependency Analvsis

In order to ~hoose the test with max-
imum entropy some algorithm for the assign-
ment of information gain must be es-
tablished. One approach is a form of depen-
dency modeling. For simplicity of example,
assume we have four boolean variabies: Bl,
B2, B3, and B4; and three software modules:
M1, M2, and M3 related by the following

T R T R e
e S G O O P s

program segment.

Call M2 with Bl returning B3
Routine M2

Cail M3 returning B2

Call M4 with B3 returning B4

The following data and control depen-
dencies can be identified. Variable B4
depends on module M4 and variable B3.
Variable B3 depends on module M2 and vari-
able Bl. These are cailed first order depen-
dencies. By inference through variable B3,
we can also reason that B4 depends on
module M2 and variable Bl. This is cailed a
higher order dependency. Through identify-
ing all dependencies and applying a weighting
algorithm, a figure fcr the information
entropy value of each test, here represented
by a boolean variable, can be determined.
This would then provide values of entropy
for our information theoretic approach to
error analysis. For compiex software topolo-
gies, computer processing will be required for
determination of all higher order dependen-
cies. The initial requirement would be the
identification of first order dependencies,
tests, and modules. This could easily be
done manually, or possibly with a simple
tool. The data may even exist already for
systems developed with a structured analysis
and design approach.

Paradigm Concepts

Now that we have identified the theory,
one area of application, and an implementa-
tion approach to using information theoretics,
the next step is to relate the presented
material to the area of software reusabiiity.
The potential for application covers a wide
spectrum of possibilities.

Reuse Metrics

If we just performed a dependency
analysis of a software program on any one of
several possible dependency relationships
such as shared data, execution control, inter-
faces, scheduling, etc., the analysis could be
used to generate a relative metric associated
with that characteristicc. The metric is rela-

O
'u':‘n':?t;:?l\?n'

"‘a-
1% 0

tive because it probably wouid have no abso-
lute meaning, but would be very useful in
characterizing the program. One program
might have a shared data metric very high
with respect to another program, both of
which could be used as a reusable component
within some other program.

Depending on the type and quantity of
modifications required, the program with less
shared data dependencies may prove easier to
modify. Similar arguments couid be gen-
erated for other types of metrics that might
be generated.

Context-Free-Comparisons

The set of values which represent the
dependencies within a program may also
represent a fingerprint of that system. This
fingerprint in general would be free of any
context description of the program such as
language of implementation, host computer,
or field of application. Comparisons of these
sets of data might be useful in identifying
reusable but abstract concepts such as the
requirements or design of a program.

E3 Methodology

Dependency analysis can be seen to
have direct applicability to a Form-Fit-
Function (F3) type of methodology(4). This
is the use of "standard characteristics" for the
specification of requirements. The charac-
teristics could inciude any aiscussed, or even
more complex characteristics based on
advanced algorithms for determining metrics
such as "coupling” or "cohesion.” This is not
equivalent to using a "black-box" description
of a program because the dependency model
inzludes the internal workings as well as the
interfaces. To be a complete methodology,
the "approach"” not only would identify the
best fitting software for reuse by these
characteristics, possibly from a library of
software; but would also provide insight into
how or where modifications should be made
in order to make two programs compatible.

Anticipated Problems

The concepts described in this paper are
currently being applied by ARINC Research
Corporation in the fieid of hardware system

39

LN oy
n'. Rt ey Bl i) n’.‘c”'ﬂ. ORI

testing(5). Research into the applicability of
the methods for software testing is currently
being funded internally. Some of the key
issues to be addressed by this research are: 1)
the identification of what dependencies can
be generated, 2) the applicability of these
dependencies to software related problems
such as fault isolation, reusability, reliability,
test development, fault tolerance, and secu-
rity, 3) how the data acquisition for depen-
dency analysis can be gathered, and 4) how
can the problem be structured to minimize
processing requirements.

Summary

The concepts of information entropy
and self-information combined with probabil-
ity have been applied to the field of hardware
testing with considerabie success. Research is
being conducted into the extension of this
work to the field of software testing. There
is a potential for application of the basic con-
cepts to many other fields of software and
systems anaiysis. The primary consideration
in our approach is that the problem must be
formable as a dependency model.

Bibliography

{1] Gordon, G.N. - "Communication”, Ency-
clopaedia Britannica, Vol. 16, p. 686, 1985
ed.

{2] Shannon, C.E. - "A Mathematical Theory
of Communications”, Beil System Technical
Journal, G23-656,27, pp. 379-423, July 1948

(3] Balaban, H. & Simpson, W. -
"Testability/Fault Isolation by Adaptive Stra-
tegy", Proceedings: Annual Reliability and
Maintainability Symposium, Orlando, Florida,
January 1983.

{4] Boring, G. & Retterer, B. - "Form, Fit,
and Function Specifications”, ARINC
Research Corporation Technical Perspective
Number 16, (1974).

[5] Simpson, W.R. - "STAMP Testability and
Fault-Isolation Applications, 1981-1934",
Proceedings; IEEE International Automatic
Testing Conference, Uniondale, New York,
October 1985.

|
Q‘. (N 'a 2t .l‘ "'l ‘l b‘r‘&““”‘. ‘.'

ittt

T TPw U L gy ar

N .

)

;)
Wy

ig. Sg'

) Information Theory and Software Reuse
o by

Rodney ™. Bond

S
3D

s for presentation to

f‘j A ication Group Worksh

i

Y 24-27 March 1986 =
P

Washington D. C.

iL:,c .c,

o &.’JE:':E:E;.‘-'

Yyt

RO ONTD [D) W9 4 000 OV ’ Ty § OGO GOSN GOSN ONOAC
. .;":-"!t'\‘n"!v!'::?‘!e"th!'!!"g' N N RN XN O Antatadntelalntadatndalabibnbatatntatat et e

DANSONN I e

v

. tra

C . Curr‘eﬁt Research

i ® Based on Information Theory

0 ® Applied to Software Testability

r & e Uses Dependency Analysis

4.,,‘
LY R XX]
¥ G

orN

Iy)
", t"' »

L , 41

)

»
A
-.'.::J‘tk'. A

) 0 : ORI TR RIS ¢ o i GEOGANBIGO0O008 pe gl
D R A A T R T R R AR TR R SR TR D X T AR D R A A R S OO o

..... . L3N

AN

352:' | Information Theory

) ® “"Who éays what to whom with what effect?”
o e C.E.Shannon

s ¢ Quantitative Theory of Information Measure
ee Not the only model

o ee Not universally accepted

i ee Uses three metrics

see Entropy {H)

e eee Self-information {I}

CH eee Probability {p]

: 42
°

Ot < oy, Ol) 48 R T R O N g T T Dy 0 B S Bt O
S R R R A AR DO

g
M M
o H(X)=E[I(x;)]=Zp(x; I(x; J=-Zp(x; loglp(x:)] |

.

i i=1 i=1

o ee® [= expected value function
ee M =number of unique symbols

s ee X =random variable
KR ® For binary system {M=2]
ee {0,1} {true,faise} {nothing,something}

X e® Mutually exclusive & exhaustive

e p(x;)=0.5 = H(X)

oo e® Equal chance = maximum entropy

o 43

ey ; A : ' ' g : '
L) O OGN0 - \ ’ J) ¢ (A IO XD PN BOCKOOUOIMEOOOINDOK
":‘n.'f';lf‘.\f’df‘uf’a*?‘»‘t‘f‘f".‘\f‘Lf‘:ﬂ'\f‘aﬂ@ O O RUREN AN RO RN IR D DO RO R TR DR et)

3 4¥. . * B B i

BT, L O e g L. 8'a 8 a B e 8 A 4 &t TWw e TR Ot TN TR T "o Y T A T T T PO T U T e
1,
9‘,:0'
'{..,.‘
IR
LG

ftware Testin

e Let M=2, X={result of test}, x{='good’, xo=bad

O)
sysTEM
COMPONENTS

J =iy

INPUTS

SUTPUTS

-
[
(=]

6ood Indication

Bad Indication

Information

) 0 Fraction of test points 1.0

\ . y
SO GO0 A0 Y 0 BT AN J J DGOBE DAODOGO0OM
i,n.,"é..‘i.ﬂ"’;??*ﬂ:é.«!:’u'.‘:lgEn!“;*‘.’,’.’ “’A\,‘t‘.'ﬂ‘,"l“. 15:'5,‘..,.5"‘ M X A RN MOUR) s,k'»té‘o.’,'y‘,lqv?l"»‘ec.'6':-.6‘»‘!’f.twc‘."e,"‘«“‘k!"i."*-"-‘n"'w' vl b ..!a"l';ﬂ‘," P

A

s e Information gain maximuzed

R ee® good test near input

ee bad test near output

o o Test strategies

e ee® No prior knowledge of test outcome
et ee® Random

X ee Directed

o 45

3

5 JENAC R S S ST S IO N P
R A AN B . ‘.:‘A”’Si“.alﬁ.a?&:a?a?

o ee [nformation Theorectic

) eee Seclect "equal information gain” test
see Answers most "unknowns"

i ese Approaches half-interval limit

c.. Dependency Analvsis/Modeling

o 4 module

s (o . f\
i \81) P M2 - M3 \BZ’/ >

variable

55?; M4 @ -

. »

AL L » 3 J v il Fy 3 2 13
N Y JOUTRIUGUOUCOOUOLN) ; OO0 } 0% B8 OCOLOUOEORN ’ Bty
B K B L e 0 A G D NS R KR A A AT S R I T o N

a LRIt N AR

Too
55
53

e ® 1st order dependencies
A e Higher order dependencies & automation
£ e Weight to get Information Entropy test value

RS
‘:ﬁ ® Possibly use existing dependency data

!‘Q"
o G2

hd 47

1,877 ¥ . g EPIL] ’ p y Y :
LIS SONNUTR] Cat M) OGO ¥ R U 0SB0 { E ORER
O +h o 5"3‘] .‘?ba‘n-.‘?iz.flt* \!:1?3»._’! ."'a“.’ .‘!!f“aji‘?i .‘.‘*!‘"h"‘*.:"h'"n'!'t“l,,"’ .3&:"#:"!?‘!!;'-3a.‘f'.‘?!:"‘!.‘Js‘f%‘f%‘flq‘:!.‘:!:‘:tt‘g'; ‘!‘ '-".A‘l“:'o‘?'l.‘.‘\ul‘.:'l.:“‘:e-.u"" s

- Paradigm Conce

0 ® Reuse metrics

e ee Data

e+ C(Control ..

i‘ ee ‘Characterizing” metrics
™ o Context-free compariéons

2: e# Tingerprint

b ee Applicable to abstractions

.,.‘__‘
M SR 0
L S S

48

¥

"l . " . . . " .
L Q QUM M B RN A [Tl (] P NN N AN I DTN I o
B A IR SO PN RO N ARSI s SR S b b

] AR AR AN R DA SRS
‘.:’ﬂ;‘*&. '(‘;'E'”;(m‘i" : -‘-':.'»‘A‘n ‘\1'(!0‘9'_1'.%?»‘-‘.3‘4}-4‘(

e FS methodology

ee Use of standard characteristics
e® Not black box’
ee |D best fitting software from library

e® Provide modification data ...

Cor

49

DO OO000G0G0G0A OGN OIS OS OIS DD ADNEN ONBEEED
Vaiy zv}g&!‘y‘!h*j"'bbt‘u‘!*‘6‘5»“ ' ";"‘h":‘a"’wi’v?-*“-.\‘ ~n*-'!Tzt‘*r""x\'?“:"‘f&-“"k!l!

" BRSO ORIROBOG) DSOS NS WS WAL B Y
RIS ML N L LILFS IRPE IRt 9 > By B T, 0% RS &
A ‘Ja'.ﬂ\‘.*-‘fy }‘,.'y‘."»',""d“f ’n‘i‘*m.“s‘ql‘b"“gi,'\b.‘)‘f‘x .‘n‘:‘\l."

(AR
e-i':‘.i'o‘

! R
‘"’o'!.l ‘l!:
an
e

») Key lssues

e ® Dependencies?

3o e Dependency applicability to software problems
e Data acquisition

:§,§ ® Minimize processing requirements

o ® |s the hardware/software translation viable? «

ROW) ";‘.‘“‘

i

¥ A.' ‘
|
|

LAV PO AR 1 4 v AOSADAD DAOAOGOAOOIOCEENDUOLINK GANK
OIS n"".?l‘,{i‘vi*'x’l'\'w“,i(';'t"".l‘\'d’gf‘f,gi.a:l'n?«“;__« ;’lf!.‘fl*.s%'gfi‘itl’qtl?v""ﬁ"(J?‘E!"q“!’ﬂ_"d?l,'3;"?)._"j,"l,‘?h‘?‘l‘dl‘."“."!;v“ﬂ;._h : [J,L‘\&‘J,‘Jn“hr ARy

Ny

ol

’a!:.‘t_

®

v";;'

rn

‘!’.'i

'0:0'0"

o @\

W,

- WHY PROGRAMS BUILT FROM REUSABLE SOFTWARE

K SHOULD BE SINGLE PARADIGM

l"ﬂ'

L

AN .

3:'.' N Elaine N. Frankowski

o

L X

' 2 Honeywell Computer Sciences Center

:!:,’I' 1000 Boone Avenue North

iy Golden Valley, Minnesota 55427

!

U W)

)

;l."l Abstract

A8

1 4

4

.‘.:; ; This paper argues that it becomes possible and economical to reuse software only when all the
. reusable parts exhibit a single paradigm and suggests that object-orientation is one recommendable

S paradigm.

) J‘v

15

1Y Keywords: Ada, reusable software parts, object-oriented programming.

[

: '.:. This research was supported in part by the Office of Naval Research under contract No. N00014-85-

o C-0666.

DAY
,

)

¥

:'. :q: 1. INTRODUCTION description language (PSDL) developed by

e . International Software Systems Inc.(1) We

- (s Honeywell Computer Sciences Center’s chose the Symbolics(TM), a Lisp machine

oy RaPIER (Rapid Prototyping to Investigate with support for dynamic linking, because

Ty End-user Requirements) project is currently prototyping demands a great deal of program

‘:.:v: working on a methodology and automated mogification at run-time. We expect their

;,":o:' support f_°" constructing and using prototypes Ada compiler, which we will be receiving

LN to lnvestlsatc end-user requlrements- Tl'adl- shortly‘ to explo.t these facllitleS. We have
g ti‘onal l‘equi'remems deﬁnitlon.methods con- already buiit two example prototypes using

Tl ::;tizﬁm;atfi:‘t!actt% r;“;::t:; ;e‘:::e:‘:fg:s_;l::l Lisp flavors as implemented on the Symbol-

Y 1 ics.

;.g and built [ZAVESS]. We believe that rapidly

': o built‘ prototypes which model critical systems This paper is organized as follows: Sec-

K0 requirements can lead to early consensus on tjon 2 discusses three assumptions about

requirements that are acceptable to customers reusing software that underlie the recommen-

O and feasible to impiement. dation of single-paradigm programs. Section

ot ! . 3 presents the reuse process and a critical

:‘:‘: build Tl::t RaPlEg apzroacl:,l [C:;%] &': to requirement for reusable software. Section 4

':::' pumx s pt o;y pes or?twemd:tab so daxt'e discusses how single-paradigm programs facil-

:'t!., S otr: in 2 so ":. h I v”f’l and to itate the reuse process and support the criticai

express tuem in a very high leve’ language requirements. Section 5 recommends

that specifies how the parts are tailored and object-orientation as a suitable paradigm.

P, interconnected to form a complete prototype. ¢ i o i ccac future work

hrie The RaPIER project has the opportunity to :

v: » test the feasibility of this approach with non-

: v product software, in a non-time-critical 5 ASSUMPTIONS

‘e milieu and to test different styles of

Y implementating reusable part in this less Qur experience in buiiding prototypes

Ui LY demanding milieu. We intend to experiment by reusing Lisp flavors, and experience

ol with the approach using Ada on the Symbol- reported in [MATSUMOTO84, KER-

¢ ics and a very high level prototype system NIGHANS4] leads us to make the following

A

0..

POl

@ 51

o

PR XA g Y .
ATy 873 0 A LSOOG IO 4% 873 0 173 .87 8 & & -
At il niRktnl e e ut el atnt il s hatinlet atatatatatatetanlneinintn ot b

oJINEEENRREA

YO My

ll‘
Y
!‘.

L)

OO
PR MY
St

L) ‘l.

1,40 COQO00000 OO0 QOO SOOOGONEN0 JO0NO0000 UOCUOOOOOUOOOSONOSOCONOMONOG
. “'of:'m._:‘n'.’\‘.‘1"’»': ‘_:'0‘:'!‘:“’2'3’:’.‘:'0..:'l :’:.’.ﬁ g t'u’:'3‘-‘.'»‘!’a"’u‘!ﬁ’:ﬁ$’ ".'s"“"";‘.ﬂc‘:"b‘.".‘!'l.?'""ﬂ',‘"‘?’a‘?' SOCHONONE NI INASER AR ON LWL

assumptions about the activity of software
reuse and about reusable software parts.

(1) As a rule, reusable software, especially
reusable code, will be modified each
time it is used in a program. The sim-
plest modification is the instantiation of
generic parameters. More general
modifications include enhancing a
software part by adding features, re-
stricting it by hiding features, and
implementing it using features provided
by others [GOGUENS86]. If software
reuse is to be cost etfective,
modifications must be done systemati-
cally using "hooks' provided by the
software part, and not simply by chang-
ing code.

(2) Reusable software parts, especially reus-
able code, must be built for reuse,
either from scraich or by extensive
retrofitting [MATSUMOTOS84]. While
it is possibie to take code and "massage”
it in order to reuse it, we claim that
what is really being reused is a design,
and that the massaging constitutes writ-
ing new code from a reused design.
When a potentially reusable part is
built, its author must consider the fact
that it will be reused. This means,
among other things, that the part
should provide an appropriate abstrac-
tion, that is, behavior that is general
enough to be useful in more than one
program but specific enough so that
there is not a large performance penaity
for generality. The part should also
provide appropriate hooks for sys-
tematic externai modification. OQther
characteristics of reusable software are
described in [STDENNIS86] which was
produced by the RaPIER project.

(3) Reuse will be most cost effective when
reusers are familiar with the nature of
the software parts that are available to
them. This does not mean knowing a
software part’s behavior. No reuser can
be familiar with the behavior of all th=
parts in a repository, although the locat-
ing process will be quicker if the reuser
is familiar with the behavior of some
candidate parts. What "familiar with the
nature of the software parts" means is
that the reuser understands "how things
work.” For example, Unix(TM) users
understand that Unix utilities expect a

52

standard kind of input and output, and
that piping can connect these utilities in
a systematic way [KERNIGHANS4).
Unix users build programs out of reus-
able parts fairly easily because they
understand "how things work.”

3. THE REUSE PROCESS

There are four steps in reusing a
software part, and one crucial requirement on
reused parts.

Before a part is reused, it must be:

o Located. A candidate for reuse must be
found among all the reusable parts that are
archived in some software database manage-
ment system (SBMS). The SBMS must
present users with a lucid classification
scheme that appeals to their intuition. Each
candidate part must be specified in such a
way that the reuser is likely to find it.

0 Understood. Understanding a part means
knowing what it does, how it does it, and
how it can be reused. All these facts must be
included in each part’s specification. "What"
is the part’s function; "how" its operational
behavior (for example, its reliability or per-
formance); "how it can be reused” includes
its expectations from its environment and the
interface through which it is modified and
incorporated into the program under develop-
ment. Specifications can be natural language
comments, formal specifications in a language
such as the predicate calculus, operational
specifications in a language such as Prolog, an
Ada interface description, and so forth. Code
as the only specification is unacceptable.
Needing to read a part’s code because of the
poor quality of its specification is not desir-
able.

When the part is being reused, it must be

o Tailored. We assume that modifications
will be needed. There are two kinds of
modifications: {l] making new entities
(types) from old by modifyinrg something
about the entity: for exampic, making a
binary sort routine from a binary search rou-
tine by adding functionality to the search; or
{2} making new instances of types: for exam-
ple, instantiating an Ada generic with param-
eters that particularize it for the program in
which it is included.

N

.'ﬂ ACE A

1.4

A

SoTeele ~ e tutallore
ELEEET
’ e 0 e Yy "o

«l.":!({’ 4

'
»
-

. ﬂ"‘

5Ny
4

¥

 §

i

7 @ Lo
P

f 3

.
‘4'-"‘

il ol
<, ’ﬁ’. ’‘,
Yy

- Y,

Rt

'.{s‘:a'_\'

OB

&- ~:“‘l. L)

»
¢
v
n

®
yaia s s

‘If'

X
ARG R
DAY

e

s

.-:3‘.

-"“’l

Changing code is the least desirabi~
make a new entity or new instance.
should be tailored from the outside using

way to
Code

"hooks" such as parameters. [GOGUENS6]
lists eight techniques for constructing new
entities from old; none necessitates internal
code modification.

o Connected. After a part is tailored, it is
ready to be put together with the rest of the
reusable parts that form the program under
development. Connection requires build-
time support in the form of a module inter-
connection language such as LIL
{GOGUENS6] or PSDL (ISSI86]. Program
construction is best accomplished in a
development environment with module inter-
connection language-based tools. The
RaPIER project is developing such an
environment for constructing prototypes.

There are many requirements for reusable
software parts [STDENNISS86]; one is crucial:

o Insulated from its Environment. A reused
part must cause only the effects which consti-
tute its documented behavior. It must not be
a danger to the rest of the program by caus-
ing undocumented effects. It must be built
not to interfere with any environment in
which it finds itself. Conversely, a reused
part must not allow the environment to
endanger it. It must not make implicit
assumptions about its environment that,
when violated, will not allow it to function.
It must not be open to uncontrolled
modification of its internal state by its
environment.

4. PROGRAMS BUILT FROM REUS-
ABLE CODE SHOULD BE SINGLE
PARADIGM

"A [programming] paradigm is a style
of programming, supported by system facili-
ties, that provides leverage in a range of pro-
gramming tasks" [BOBROWS5]. Some com-
mon paradigms and languages which support
them are: procedure based (Ada), functional
(Lisp), logic programming (Prolog), object-
oriented (Smallitalk), and rule-oriented
(OPSS). This paper argues that programs
built from reusable software parts will have
to exhibit a single paradigm.(1)(2) By impli-
cation, the reusable parts that compose such

P
Qe

f.u b, .‘c..P 2 fs. ! .ca

"

53

. ' ,|l!'. a.! . A':

programs will have to fit the paradigm.

We have concluded that programs
built from reusable parts should exhibit a
single paradigm at the top (interconnection)
level. That is, the modules that are con-
nected and the connections themseives
shouid all be of a single style. Internally
moduies could be implemented in a variety
of styles; however, the interfaces they
present to the reuser should be semantically
uniform.

One major argument for a single para-
digm is that reusable parts that were not
"made for each other" must work together;
that is, cooperate to achieve the system’s goal
while not interfering with each other. This is
more likely to occur when ali the reused parts
are of a single paradigm: subroutines, Ada
packages, flavors, and so forth. Another
major argument for single paradigm parts is
that ail programs require run-time support
and that simultaneous run-time support for
multiple paradigms is not usually available.
These same arguments also justify programs
composed of reusable parts written in the
same, multi-paradigm programming language.
However, Ada is not a multi-paradigm
language, and most aew, sharable software
will be developed in Ada. Therefore it is
more practical to recommend a single para-
digm for all the reusable parts in any program
than to recommend several paradigms imple-
mented in the same multi-paradigm language.

We now discuss how singie-paradigm
programming aids, to a greater or lesser

degree, in each step of the reuse process

presented in the previous section.

(1) Locating. The major contributors to
findable parts are good specifications
and an SBMS with a perspicuous
classification scheme. A single para-
digm can help somewhat, in that classi-
fying the same sort of entity is easier
than trying to put functions, objects,
logic routines, rules, etc. into the same
classification scheme. In addition,
library management tooils can interact
with standard components in a standard
manner, allowing more possibilities for
automation. For example, a tool could
more easily produce explanations of
parts’ behavior by parsing the parts if

LA .o’ ‘.'t':\"- t"\"‘.

SN
\n,‘x '. ..b

|

¥ g

)

<
l.vX

e Yo

B, i XA
&5 @ F & o &

- e
-

LaARAEAS
W e

2

TC Ak ;
.‘f. J'. r':':'

%

aon”
- ({"’I‘_-

()

&)

4

the parts all follow the same semantic
pattern.

Understanding. When users need to
understand only one sort of thing, they
accumulate background about that sort
of thing. Thus they know basicaily how
any part acts before investigating it and
need only the added knowledge of pre-
cisely what it does. For example,
understanding filters in generali means
that a user, encountering a filter, needs
to ask only what the filter filters to have
complete knowledge of how the filter
behaves. When users need to under-
stand many paradigms, they usually do
not accumulate extensive knowledge
about each.

Modifying. [GOGUENS6] lists eight
kinds of modifications that will produce
new entities from oid. When programs
are buiit from one type of entity, it is
economical to invest in learning how to
supply the hooks for external
modifications of reusable parts in this
paradigm. The hooks then make it easy
for reusers to modify parts correctly.
Even if, in extreme situations, code
must be modified internally, the form
of the code and its general behavior will
be familiar, making it less likely that an
internal modification will introduce
errors into the code. When users
write reusable code in many paradigms,
they will not have learned patterns for
"hooks,” and so will make more provi-
sions of external modification.
Reusers, in turn, will have to use less
well thought out modification facilities
that are also less familiar to them.

Connecting. Two major benefits of sin-
gle paradigm programming apply in this
step. As mentioned above, program-
ming with single-paradigm parts guaran-
tees that the parts will fit together and
that their run-time support can be pro-
vided. [n addition, users will learn pat-
terns for combining parts, thereby
becoming more productive. The con-
nection step should be supported by a

program construction environment
[GOGUFNS86] that is based on a
module interconnection language

(MIL). If the module interconnection
language is tuned to the paradigm, it

-

54

can provide concise primitives for para-
digm specific things such as message
passing for objects. Thus users have to
write less and, more importantly, to
think less since the MIL’s primitives
obviate the need to built paradigm
specific capabilities "by hand.”

(5) Insulation. There are paradigms such
as the object-oriented paradigm dis-
cussed below that, through information
hiding, provide insulation between parts
and their environment in both direc-
tion. In addition, when all parts in a
program follow any single paradigm,
they are far less likely to interfere with
each other. Multiple paradigms means
different parts have different expecta-
tions of and behavior toward the
environment, which can lead to
interference.

5. THE OBJECT-ORIENTED PARA-
DIGM

The RaPIER project has chosen the
object-oriented paradigm for its reusable
software parts. Object-oriented program-
ming is the paradigm embodied in Smalltalk
{GOLDBERGS3] and the Lisp Flavor system
[CANNONS2]. The concept of an object as a
named computational entity with identifiable
behavior is central to object-oriented pro-
gramming. An object’s behavior is its reac-
tions to the set of messages it "understands.”
where a message is a request to initiate pro-
cessing or provide information, and "under-
standing” means call ... denctes an action,
and sending a message ... makes a request ...

(Tlhe interpretation of the message is left
entirely up to its recipient.” [RENTSCHS82].

Object-oriented programming can
proceed top-down [BOOCHS3] or bottom-up.
Bottom-up object-oriented programming
begins with a collection of reusable software
objects such as the Smalltalk system’s objects
or a user’s personal library. Objects for the
problem at hand are built up by combining
more primitive (system or user-defined)
objects. Eventually the system contains the
appropriate objects to solve the problem at
hand. Then a program that uses these
objects is written, often in a module intercon-
nection language such as CMESA, PSDL or
LIL. Bottom-up object-oriented

@r

J

¢ 8 & vy W) ™) - | N ARV W 2 LS , OO0 ¥
vt an it adulmtrd bttt adat atntad atntintnintatlntode) sy s ERC O PR IR DS RIS

)
c':'t
Wt

@
B
L3
(o
W
j: . programming is a natural way to exploit a prototype’s structure to the user, providing
l: iRy x&& software repository’s resources. The program the structured communication vehicle recom-
v under construction can certainly be designed mended in [ZAVES8S5]. Another benefit of
;.;.’1 top-down, but that design will take into objects in the prototyping milieu is that they
n:.h ‘ account the availabie resources. localize change, yielding an easily modifiable
:.1‘0 prototype. This idea is examined in detail
wovy below.
R (1) This does not mean that every program Objects aid the reuse process in the following
.j must conform to the same paradigm, ways:
AN only that each individual program will _ ‘
;Q‘ be single-paradigm. (1 chatmg. . [BOOCH8_3a] motivates an
a" (2) Some problems should be solved by obj'ecy onent;d design approach by
o programs written in languages such as pointing out that
ey Loops [STEFIK86], that integrate mul- "No matter what the particular applica-
(tiple paradigms. A program in a multi- tion, the problem space is rooted some-
o paradigm language offers some of the where in the real world ...in the prob-
X same benefits we claim for single- lem space we have some real-world
K paradigm programs. objects, each of which has a set of
:,‘: appropriate operations....
' s "Whenever we develop a software sys-

\ # ' Object-oriented programming has :aerx;lt;lex:e r;}gde;‘ at?er 1:;;:” 0:;2
, specific benefits in the RaPIER setting. One implementation. our solution space
"Q’ important one has to do with the fact that a implementation, p

$. . L paraileis the problem space. ...the pro-
P prototype is a vehicle for communicating . X

> . grammer abstracts the objects in the

ol about reguxrements between customers and problem space and implements the
v product implementers. Traditional black-box abstraction in software.”
o (.{. requirements are difficult to discuss even ’
1::. among computer specialists, but especially We believe that both locating and

3:.:. between domain experts who are not com-
puter scientists and the computer scientists
who are solving their problems. {ZAVES5]
states that "An..important factor in
user/analyst communication is the ability of Q@)

understanding reusable parts:is facili-
tated when the parts are the
programmer’s "natural” abstraction.

9/
\=r

Understanding. As stated above,

L@ I Ty
:}_l"

<,

requirements....." That operational model has
structure; it is the structure that facilitates
discussion between customers and develop-
ers. We conjecture that users interacting
with a prototype will view it as a collection of

L the user to grasp and evaluate the concepts bi del of th

x "’j behind any proposal. Experienced systems objects are a natural model of the sort
:. analysts report that an explicit operational of software component that many pro-
Y model is much more helpful than black-box grams should comprise. Thus people

reusing them will have some intuitive
understanding of "how they work" even
before studying the paradigm. Objects
(rather than subroutines, data struc-
tures, or general code fragments) are

also an appropriate unit to understand
in detail. They present complete
enough behavior to be understood and

autonomous, concurrent processes.
Although they will not think in computer sci-
ence terms, of objects with local state and

: < methods, and of asynchronous communica- ?sed as units rather than :s mcomplete

NCY tion by message passing, they will think of a fragments, and to be combined without
o collection of processes, modules, or objects, internal modification. The work on
oy each responsible for some part of the abstract data types [LISKOV75],

g) . Smailtalk {GOLDBERGS83], and Fla-
AN prototype’s behavior. And aithough the [CANNONS2] bears thi

& objects from which the prototype is built will vors ars this out.

not be the same as the objects the user ini- The object’s interface is the set of mes-

~:‘? ?_,_::'J tially imagines, the builder can elucidate the sages it can handle; each method can be

-
g

SRS

T
W
S
A v € MR % U W N Y s W o N I R A r K . —nr !
LA AN A PFEVAL , .) '
M.y % R, S ,c' B AR TR AR I A et !': .‘;‘!Un hialetarineteaigatih ’h!'"’h‘!h‘!!:‘. AR :‘!ﬂe‘!h‘

G 5

PR

o
o

L U
Coat

)
Ay

.‘:5-3-.’*. >,

@ FANSSSNNIQ B

o
P
A A,

I

- o =

o3t <1 @ SO ey

l*'

» [Bey
ittt

3)

4)

PIROR A

specified separately. This is a clean,
simple interface: it is specified in small
enough chunks to be easily grasped; it
describes operations (methods), a
notion that the user is already intui-
tively comfortable with. Thus the total
specification presents a complete
abstraction in easily understandable
chunks.

Modifying. An object is a complete
unit of behavior; if it was built for
reuse it presents an "appropriately use-
ful abstraction” (see Assumption B),
and thus the methods it provides will
not have to be changed. Therefore,
modifying an object will mean enhanc-

ing or restricting its behavior; both can

be done from the outside by adding or
deleting methods respectively. It is
good software engineering to consider
all changes to be either enhancements
or restrictions, and to simply disallow
internal changes to code. This is possi-
ble under Assumption B.

The object is a well-understood concept;
reusers who modify it will know its pat-
tern, and be able to modify it in the
pattern. A module interconnection
language can provide primitives for re-
stricting an object’s interface. For
enhancing the interface, reusable
objects can include some hidden
methods (that is, methods not avaiiable
to client software) that can serve as
primitives for creating new methods.
Hidden methods ensure that
modifications are correct in that they
present a modifier with the same sort of
"safe” interface that they provide for
client software. Hidden methods are
one of the investments that can be
made when writing software for reuse.

Connecting. An object-oriented pro-
gram is, in concept, a loosely coupled
collection of autonomous, concurrently
active objects which communicate by
message passing. Each object controls
its own processing by interpreting the
messages it receives and deciding how
to handle each one based on its state
and methods. This model has
undemanding connection requirements:
the module interconnection step must

(R N ;'l!'e'!.n'\':'i. "!‘!'0.c’t‘.n’i‘.:’l‘.n‘l‘.l 0?\"! 'tfq',*o,‘: .‘ﬁ!‘:l ’i'.- 0"’."; A”'.s' 'R“,'.l.“ll.".‘v‘"@‘"ﬁ““ .C (X ‘p‘,ﬁ,

56

only establish "wires” for messages to
flow across, and provide some means of
kicking-off the system. If all objects
name the targets of the messages they
send, interconnection can be totally
automated. The model does require
run-time support for message passing.

(5) Insulation from the Environment.
Objects provide information hiding, not
just modularity. No object can manipu-
late another’s state except through well
defined interfaces. the methods; objects
control their processing by interpreting
messages. Thus the likelihood of the
environment spoiling an object’s state is
vanishingly small. By filtering their
requests, objects do not allow interfer-
ence. Because each object protects
itself, interference is prevented in both
directions.

6. FUTURE WORK

In order to make the object-oriented
paradigm work in our RaPIER prototyping
environment, we are investigating
questions:

o What is an adequate implementation of an
object/message passing model in an Ada
based prototyping environment.

o What features of the object modei can be
implemented in Ada? We will learn to make
Ada parts that have as many of the charac-
teristics of Smailtalk-like objects as Ada can
support and learn how to do without the
characteristics Ada cannot support. In partic-
uiar, we shail investigate how to implement
inheritance sufficiently well to obtain the
time and effort savings from making a new
object out of operations and data structures
inherited from parent objects.

o What are the build-time capabilities
needed to support program construction by
Ada object connection?

o What are the run-time capabilities needed
to support a system of Ada objects?

o What kinds of modifications
[GOGUENSS6] are necessary to reuse objects

these

OO BN LR

L) R » : . I g
§ (AN (AT MMM N s BRI MR LW ST WCE
B s T T N S A o A R A N N A A KO R R Ot 8 O D S O R OO U X U R KOG

and how do Ada objects have to be con-
structed to allow these modifications to be
made externally?

7. ACKNOWLEDGMENT

The author acknowledges many
extremely enlightening discussions with
Curtis Abraham of Honeywell’'s Computer
Sciences Center who has designed and imple-
mented two RaPIER prototypes. The ideas
in this paper have benefited greatly from his
insiglits into reusability and Lisp Flavors. He
also read a draft of this paper and recom-
mended several useful changes to it.

BIBLIOGRAPHY

[BOBROWSS5] Daniel G. Bobrow. "If Prolog
is the Answer, What is the Question? or
What it Takes to Support Al Programming
Paradigms,” IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, November
1985, pp. 1401-1408.

[BOOCHS83] Grady Booch. "Object-oriented
Design,” Tutorial on Software Design Tech-
niques. Ed. P. Freeman and A. Wasserman,
4th edition (Catalog Number EHOQ205-5),
IEEE Computer Society Press, 1983.

[BOOCHS83a] Grady Booch. "Software
Engineering with Ada, The
Benjamin/Cummings Publishing Company,
Inc., 1983.

[CANNONS2] Howard L. Cannon. "A Non-
hierarchical Approach to Object-oriented Pro-

gramming,” M.LT. Technical Report
(Draft), 1982.
{CSC86] Honeywell Computer Sciences

Center. "Final Scientific Report to The Office
of Naval Research: Joint Program on Rapid
Prototyping,” Honeywell Computer Sciences
Center Technical Report, CSC-86-3:8213,
March 1986.

[GOGUENS6] Joseph A. Goguen. "Reusing
and Interconnecting Software Components,”
IEEE Computer, Vol. 19, No. 2, February
1986, pp. 16-28.

57

o]

(GOLDBERGS83] Adele Goldberg, D. Rob-
son. SMALLTALK-80: The Language and
Its Implementation, Addison-Wesley,
Reading, MA, 1983.

[ISSI86] International Software Systems Inc.
"Prototype System Description Language:
Draft,” private communication, January 1986.

{(KERNIGHANS84] Brian W. Kernighan.
"The Unix System and Software Reusability,”
IEEE Transactions on Software Engineering,
Vol. SE-10 No. 5, September 1984, pp. 513-
518.

[LISKOV75] Barbara H. Liskov, Stephen N.
Zilles. "Specification Techniques for Data
Abstractions,” IEEE Transactions on Software
Engineering, Vol. SE-1. No. 1, March 1975,
pp. 7-19.

(MATSUMOTOS84] Yoshihiro Matsumoto.
"Some Experiences in Promoting Reusable
Software: Presentation in Higher Abstract
Levels,” IEEE Transasctions on Software
Engineering, Vol. SE-10 No. §,September
1984, pp. 502-513.

[RENTSCHS2] Tom Rentsch. "Object
Oriented Programming,” ACM Sigplan
Notices, Vol. 17, No. 9, September 1982,

[STDENNIS86] Richard St. Dennis. "A
Guidebook for Writing Reusable Source
Code in Ada(R): Version 1.0,” Honeywell
Computer Sciences Center Technical Report,
CSC-86-3:8213, Honeywell Computer Sci-
ences Center, 1000 Boone Avenue, Minneap-
olis MN 55427, March 1986.

STEFIK86] Mark J. Stefik, Daniel G.
Bobrow, and Kenneth M. Kahn. "Integrating
Access-Oriented Programming into a Mul-
tiparadigm Environment,” [EEE Software,
Vol. 3, No. 1, January 1986, pp. 10-18.

{ZAVESS5] Pamela Zave. "The Operational
Versus The Conventional Approach to
Software Deveiopment,” Communications of
the ACM, Vol. 27 No. 2, February 1984, pp.
104-118.

g

]

9
R
o
ti:‘:l
e
A :
W @
i:i".'
;;::*- UNDERSTANDING ADA (R) SOFTWARE
::: REUSABILITY ISSUES FOR THE
2 TRANSITION OF MISSION CRITICAL
;,3. COMPUTER RESOURCE APPLICATIONS
A,
i
b A. Gargaro
‘:,::: Computer Sciences Corporation
;-h Moorestown, NJ 08057
. T. Pappas
5: Computer Sciences Corporation
N Moorestown, NJ 08057
{ .l.
e
,:::, ABSTRACT
®
;ﬁ; This paper identifies fundamental issues relevant to the successful reuse of Ada software in Mis-
o sion Critical Computer Resource (MCCR) applications. The reusability of an Ada program is defined
; |:l in the context of three criteria for evaluating the degree to which Ada software is reusable. These cri-
‘:& y teria are important to writing reusable software for the timely transition of MCCR systems to the Ada
o Language.
4;:. twﬂ”-' Ada 'R) is a registered trademark of the U.S. Government Ada Joint Program Office
W
1l Prologue Approach
A central idea in the design of the Ada Several studies have reported on transi-
language (Department of Defense 1983) is to tioning currently deployed MCCR systems to
assemble a program from independently pro- the Ada language (Friedman 1985). These
duced software components. Therefore, the studies have focused on evaiuating the ade-
reusability of Ada software components quacy of the Ada language to meet existing
(STARS 1985) is viewed as the cornerstone performance efficiency requirements and do
in reducing the cost of developing Mission not specifically consider the reuse of transi-
Critical Computer Resource (MCCR) sys- tioned software among different MCCR appli-
tems. If the promise of reusing Ada software cations.
o components is fulfilled, the reduction in cost L
o is expected to be significant (Anderson The results from the studies indicate
N 1985) that in transitioning to the Ada language,
‘ A rigid performance requirements upon the
N There 1s little practical experience in run-time environment will necessitate the use
reusing Ada software components for MCCR of Ada constructs where their level of
o applications. In the initial transitions to the abstraction may be comprised by explicit and
,l.:. Ada language the reuse of software com- implicit dependencies upon the run-time
o ponents may be adversely affected by funda- environment. Consequently, developing Ada
%) mental issues that affect the writing of reus- software that is both reusable and meets the
«:0, able components. Understanding these performance requirements of MCCR applica-
) issues is necessary to managing the transition tions presents a conflict. The conflict is ex-
‘ o if the potential costs and benefits of Ada acerbated by programming practices that have
" ;:-__\,\.3- software reusability are to be predicted. exploited idiosyncrasies of the execution
G l
W ‘
%'! ‘

L 59

ORI

) g0 4 R T W00 4, AT ATy AN AT Ty AT BTy s BTy BTy BT AT e Wy 404 el Vg 0 8T T
.0,,‘;QA“I,“‘9.,'q*:‘.‘:‘a',h'.'o"ﬂ..).;‘t”..".‘qifﬁ."‘:}f"x"q!’u'.”,‘g’;’ﬂ.,';.‘“h:.!) &8540,*;_&‘"4!!.‘-9“;5'29,1‘ &_ﬁ_].‘p ‘l“sﬁﬁq?"ﬁ.-\;g‘ﬁ,s"\..';’vljgt‘vt.f3!’:"4vﬂ_!i-‘; ’,\E“ RN

L SN S
e

k2

=2ip

-
”

v ™
£

ol e s eh &
N A
W o

-
»

e’
ol

o3

>

T

W

o

gesey

IO
l"“l..».l.!.!‘t‘i ?‘

USX)

L
e

f
'fn'!.ofh;"."u.

environment. These practices have resulted
in application specific e hniques that are
efficient but reduce the level of abstraction
essential for software reuse.

For example, one requirement that per-
vades MCCR apolications is the facility for
periodic control of both concurrent and serial
processing. Traditionally this requirement
has been satisfied by variations of the Cyclic
Executive which has become the classical
paradigm for examining the efficacy of using
the Ada language for real-time programming
(Hood 1985; MacLaren 1980; Phillips &
Stevenson 1984). Often the adaptation of
the Cyclic Executive to provide efficient use
of processing resources can lead to dependen-
cies by the application software on program-
ming techniques that are nonreusable. These
techniques may persist after the transition
depending upon the implementation of the
Ada Run-Time System (RTS). In under-
standing the issues of software reuse, the
ramifications of such techniques must be
understood to perform tradeoff analysis
between efficiency and reuse when transition-
ing to the Ada language.

To understand the reuse of Ada
software components an approach must
address, at a minimum, the issues of writing
efficient code that is reusable in different
run-time environments. Particular emphasis
should be given to: performance efficiency
requirements of MCCR applications as they
affect software reuse, program composition
features of the Ada language that facilitate
the creation and use of reusable components,
and the implementation options of the Ada
RTS that may compromise software reuse.
In this paper, the technical foci is directed
towards the latter two topics.

ADA Software Reusability

Software reusability comprises the con-
cept to execute a program in an execution
environment different from that in which it
was originally developed, i.e., transportability,
and the concept to combine components
from different programs in the development
of a new program, i.e., reusability. The
comprehensive support of the Ada language
for modern software engineering principies,
viz., abstraction, composition, encapsulation,
and instantiation, provide a framework for
writing reusable software. The distinction

oAt

' 0 . 7 o
T 04"?4"!"_'!!,|’,q'!,a":o'l:|?l:l'l? DDARNN EXRANME AR CAIRA NN

made in this paper between the concepts of

reusability and transportability of Ada
software is discussed in the following para-
graphs. This distinction partially resolves the
inherent ambiguity of these two concepts and
is consistent with the notion of both re-
usability "in the large" and "in the small'
(Lubars 1986).

Program Transportability

The transportability of an Ada program
is defined as the ability of a program to com-
plete functionally equivalent execution in
different environments consistent with the
Ada language. Transportability is measured
by the degree this execution can be achieved
without modifying the source code. This
definition is derived from an earlier one
(Oberndorf et al 1982) and work that has
been previously reported (Nissen & Wallis
1984; Pappas 1985). The stipulation for
equivalent execution rather than identical
execution recognizes that the processing
capacity of the execution environment and
the sophistication of the compiling system
may affect the execution behavior of the pro-
gram within the semantics of the Ada Refer-
ence Manual (RM) (Volz et al 1986). For
example, the number of times a loop body is
performed may vary because the source code
invites compiler optimization. In addition, it
does not exclude the use of representation
specifications to influence execution since
their use is perceived as essential to most
MCCR applications.

Program Reusability

The reusability of an Ada program is
defined as the ability of one or more of its
components to execute with identical func-
tionality in the construction of a new pro-
gram. Reusability is measured in the degree
that different components of the program can
be used to construct new programs in the
same and different execution environments.
This definition is more stringent than the one
recently proposed for developing reusability
guidelines (Braun et al 1985) since three
important criteria for evaluating program re-
usability are mandated: the transportability of
the program, the orthogonality, i.e., func-
tional independence, of its composition, and
its freedom from dependencies on a specific
implementation of the Ada Run-Time Sys-
tem (RTS). The definition does not

y PP 4} A
2 "\“.‘: }l‘l..\‘*fi.ﬂ‘l!l i ,';‘1!;" ‘f?'l“g."q" K%

9

:"?‘«‘ ‘n‘,“ 088

D
& ‘\,’—‘ el

= " \)
S Tl Y

PETH

)
o
oo

L Pt vy -
NIRRT A

T N OO WY, 1 N AT 1 RN OO
SRR SOLODAIRIIR L ‘2?1'.!“:.‘ .l'v,":!!'ok‘eﬁi'_u.l‘--"o’l‘.v. o

discriminate between writing reusable com-
ponents and programs where their constituent
components can be reused.

A necessary first step to reusing com-
ponents in different execution environments
is to achieve the transportability of the pro-
gram. When only the program is to be
reused, the distinction between reusability
and transportability is the fidelity of execu-
tion, i.e., equivalent or identical. When a
component is to be reused in different pro-
grams, e.g., an Ada generic unit, the tran-
sportability criteria ensures a context for vali-
dating execution.

Compeosition Orthogonality

In discussing composition orthogonality,
it is convenient to introduce degrees of re-
usability. A component whose potential for
reuse is low is said to be weakly reusable,
while a component whose potential for reuse
is high is said to be strongly reusable. These
represent the extremes of reusability. Source
modifications and limited applicability are
expected with weak reusability, while with
strong reusability no source modifications and
potentially frequent applicability are expected.
An effectively reusable component differs
from a strongly reusable component only in
that some source modifications may be
required due to Ada language rules. In prac-
tice weak reusability is to be avoided, strong
reusability strived for, with effective reusabil-
ity actually obtained.

The orthogonality of a program’s com-
position is an attribute of the program which
reflects the independence of its components
from the enclosing context. The stronger a
component’s dependence on its context, the
less likely its polentia: fun JSuse since more
of the context must be transported with it,
i.e., weak reusability is more likely. Con-
versely, the weaker a component’s depen-
dence on its context, the greater the potential
for the component’s reuse since little, if any,
of the surrounding context need be tran-
sported with it, i.e., strong reusability is more
likely. When coupled with programming for
generality, striving for context independence
will yield effectively reusable, if not strongly
reusable, software components.

>

SO a,,‘&

61

Composition orthogonality is not an
issue in program transportability since the
entire context of each program component is
transported to the new execution environ-
ment. It is only when a component is
extracted from its context that composition
orthogonality becomes an issue. The excep-
tion to this is a program whose main subpro-
gram has parameters. But in this situation,
the context dependency is on the execution
context and not the application context.
Therefore, the issue is one of transportability
rather than reusability.

Degrees of reusability are illustrated in
Example 1, where two versions of a binary
search are shown. Example 1.a, which is typ-
ical of binary searches used in practice, is
weakly reusable for several reasons. First, it
has several context dependencies. Reuse of
this example requires providing three entities
in the new context: a named number,
Max_Table_Elements, a type named Ele-
ment_ Type, and an array named Table with
the structure shown. If these entity names or
the array structure are not appropriate in the
new contexi, then the component must be
modified. A second problem with this exam-
pie is its lack of generality. In addition to
only providing a binary search for a particular
array, it strongly depends on the array index
subtype being a subtype of Positive. This
dependency is explicit in the Mid_Point cal-
culation and in the calculations of the left
and right end points. The dependency is
implicit in the use of zero to indicate that the
element is not found in the Tabie. The
resuit subtype of the Binary_Search function,
Natural, extends the array index subtype by
one value to allow it to serve a dual purpose
-- return the array index upon a successful
search and indicate failure upon an unsuc-
cessful search.

Example l.b illustrates a strongly reus-
able version of the binary search. Here, the
function has been encapsulated within a gen-
eric package. Through the use of generic for-
mal parameters, all context dependencies
have been removed. In addition, the param-
eterization in Example 1.b encompasses all
possible generalizations of this binary search
that do not change its functionality.

T T S e S i
N ARSI AN

1]

!

i

o
v
ey

e ()

x| @FAA

‘ Poyy >
S 38 Mt Wi b

-

:ﬁﬁ?y&f

=

2T AOES

=<

LErAT

%5

® 2255

"
()
e

OO0 OOON
?l‘r!|°o.i.t<\‘:',l'ull‘-.l

08

¥ ¥,

Exampie 1.A - Weak Reusability

Table : array (1 .. Max_Table_Eleaents) of Elesent_Type;

. o o

function Binary_Search (Element : in Elesent_Type) return Natural is

Left_Point : Positive := 1;
Right_Point : Positive := Max_Table_Elesments;
Hid_Point $ Positive:

begin

while Left _Point <= Right_Point Joop
Mid_Point := (Left_Point ¢ Right_Point) / 2;
1f Element < Table (Mid_Point) then
Right _Point := Mid_Point - §;
olsif Table (Mid_Point) < Elesent then
Left_Point := Mid_Point ¢ i;
olse
return Mid_Point;
end if; »
end loop; -
return 0; Xy

end Binary_Search;

62

O\ 0 0 Q

’ 2 (Q) OO () A AT % 7 WV AT 0 A% AT AT 0 OO0 OO0 OO OONONN
‘!‘:;‘.‘:0'\‘:'. AN ':9:':!.’!’#"1‘;’1‘!‘2“»‘%’2‘!‘.'a‘.-*,“.u'de?l‘!’:ﬂ'c"-'A'!';"‘a'ﬁ‘a"'ﬂ!’a’t&u'2‘1‘!';‘!*;“':‘!‘;’2 d’“ﬂ!‘»",‘p"‘ “u"‘ﬂ OOV N SN S M b M Y

W,

»

) WO W ——w
IR -

']
'o::;'e
oy Example 1.B - Strong Reusability
o,

et '
A &L generic

type Element_Type is private;

Wi type Index_Type iIs (<);

::,::‘ type Table_Type s array (Index_Type range <>) of Elesent_Type;
t'::h with function "< (Left, Right : Element_Type) return Boolean is O;
y ".

e

:'3 package Binary_Search_Package_Template is

:::::: function Binary_Search (Table: Table_Type: Element: Element_Type)
',.-‘o:l return Index_Type;

Wy

:::i:: Not_Found : exception;

& oend Binary_Search_Package_Template;

L)

o

::' ' package body Binary_Search_Package_Teaplate is

(]

Wt

l::s function Binary _Search (Table: Table_Type; Element: Element_Type)
""' return Index_Type is

:ﬁi Left End : Index_Type := Table'First;

e Right_End : Index_Type := Table'Last;

! Mid_Point : Index_Type:

-3'\0'

)

e ¢ begin

it B if Table'Last < Table'First then

::!::: raise Not_Found;

R else

1::30: while Left_End < Right_End loop

ek Mid_Point := Index_Type'Val (Index_Type'Pos (Left_End)
,/’, + Index_Type'Pos (Right_End) / 20
;;u.:' if Element < Table (Mid_Point) then

R Right_End := Index_Type'Pred (Mid_Point);

::'I:. olsif Table (Mid_Point) < Element then

X Left_End := Index_Type’'Succ (Mid_Point);

Sut olse

return Mid_Point;

‘é?, ord if:
)

end Joop:

tyad if Left_End = Right_End and then Element = Table (Left_End) then
oy return Left_End;
=) olse
..» raise Not_Found;
A "ond 11;
.:' ond if;
[)
‘~" end Binary_Search;
}5']
. A . ond Binary_Search_Package_Teaplate:
B
My '
¢

\ * 5 IR . OO OONIACAION) O OO T N L N T R N M UL
WAL 4 .fl‘:'\"gfq‘:ﬁ’:.‘;':ft‘:‘a?.’a".‘ﬂ‘*n':‘t':‘s‘:‘i’!"s.‘!".\:‘a'f';'f’.".';‘!‘z':‘«5‘!‘.&!\!”:l',‘;lf'nf ahattdditnhthuintantahdaded st nlint e it

» ' *'
..’c .'A". L0,

‘-?""

18V

While there is no difference between
effective reusability and strong reusability in
Example 1.b, there are situations where a
difference may occur. For example, consider
a generic subprogram implementing a numer-

ical algorithm such that the algorithm
requires a real type. The "reai” type is a gen-
eric formal parameter of the generic subpro-
gram. If only standard mathematical opera-
tions are required for this type, then a private
type can be used. The mathematical opera-
tions would be generic formal function
parameters, with appropriate defauits, to the
generic subprogram. If, however, accuracy
demands necessitate the use of floating point
or fixed point attributes, then two versions of
the generic subprogram are needed: one for
floating point types and one for fixed point
types. In this case there is a difference
between effective reusability and strong re-
usability. Both versions are effectively reus-
able but neither is strongly reusable.

One strongly reusable version could be
written that would necessitate using a private
"real” type. Several additional generic formal
subprograms would need to be included as
generic parameters, but rather than providing
the user with any real benefit, these subpro-
grams would simply serve to isolate floating
point and fixed point attribute dependencies,
perform type conversions, etc. While this
version might satisfy the strong reusability
notion of this paper, in reality, users would
not be likely to use a generic component
requiring generic actual parameters merely to
comply with Ada’s language rules.

Components that are effectively or
strongly reusable seem to be consistent with
good programming style so, ideaily, ail pro-
gram components should be written in this
manner. This would maximize the reusabil-
ity of the program’s components. In reality,
this is not likely to occur since MCCR per-
formance issues may dictate otherwise.
While the binary search in Example 1.b may
be strongly reusable, program tuning may
require a weakly reusable version. In particu-
lar, the distributed binary search due to
Knuth (Bentley 1982) may be needed in the
tuned program. Since the distributed search
could be produced by a program generator it
may still be correct to view it as strongly
reusable, but at the level of a program gen-
erator.

ol 4 Fok (0 W0 A g e P, 0
o !‘a’..n'&:'..:'!‘b" ol -‘!”"- SOOI ORI D ! ': OPRINE X XU RIS IN TR IRA KA

RTS Dependencies

The potential for RTS dependencies to
affect the reuse of Ada program units can be
appreciated by reviewing a specific example
that presents a dependency on a particular
implementation of task scheduling. This
dependency does not necessarily prevent pro-
gram execution from meeting the transporta-
bility criterion when the dependency is not
satisfied in the environment to which the
program is transported for reuse. However,
successful reuse of the program unit that
includes the dependency <cannot be
guaranteed in the new environment.

The example is contrived to expedite a
straightforward discussion and the referenced
code does not represent recommended use of
the language or a dependency that cannot be
mitigated in some other way. The example
originated from a revision to a program from
the Ada Fair benchmark suite (Bardin et al
1985). The original program included pack-
ages designed to control access to a shared
variable as a means of evaluating the integrity
of the task scheduler. In the revised version,
the access control task has been modified to
service concurrent reader and writer tasks
where the access protocol is biased in favor
of writer tasks to simulate real-time updating
of the shared variable. The shared variable is
of a composite type and may be read con-
currently by more than one task providing no
task has been granted write access. Further-
more, writing must be serialized and out-
standing writes should be serviced before a
task is granted read access, since writer tasks
are assigned highest priority.

The two code fragments to be examined
are shown in Example 2. The first fragment
is the select statement enclosed by the task
that grants read/write access. The second
fragment is the timed entry statement
enclosed by the procedure that is called by
the writer tasks. The dependency is associ-
ated with the use of the COUNT attribute in
the iteration scheme of the while-loop that is
designed to service all outstanding write
requests before a new read is accepted.

The RM cautions against the use of the
COUNT attribute because its value is not
stable. In this instance sufficient stability is
only required to ensure that the Start_Write

Yy

.-?é‘-’,

50
1)
0"::
A A
St
) Exanple 2 - Implicit RTS Dependence
v";t
',:.$ -~ Task controlling read/vrite access to shared variable
§: ,:; task body Ru_Contro! iIs
1.5
' L] L[] *
~:-E§:§ select
v) == Activate new reader if no writer is waiting
KM when Start_VWrite'Count = 0 =>
: accept Start_Read;
,:::: Active_Readers := Active_Readers ¢ 1;
:.'.‘l or
et == Activate writer if no active readers
r when Active_Readers = 0 =)
o accept Start Urite;
Y accept Stop_Nrite:
N or
,:o -- Wajit for active read to complete
i accept Stop_Read:
® Active_Readers := Active_Readers - I;
" if Active_Readers = 0 then
L -- Activate and serialize waiting writers
;%. while Start_Write'Count > 0 Joop
~: (== >>> lmplicit dependency on stability of COUNT
b , . accept Start_\rite;
’ / - accept Stop_Urite:
_;nr.'l: A end loopi
AW end if;
\ or
§" tersinate;
i}f end selecti
’J - o L]
Rl end Rw_Control;
it
:'::: -- procedure called by writer tasks
':a:' . o .
N select
® Rv_Control.Start_VWrite;
-’i:;'i -~ Update shared variable with actual parameter from call
'0“ or
s delay Urite_Time_Limit;
nen Rv_Control.Start_Vrite:
By -- Update shared variable to indicate that the writer was late
® end select:
T
i
“45
)
W
o .
L P
::",?.. Ny
e
!.::i
\)
R
® 65

W)

LXX, - M i X y y AN] W PAE AT
Al 1, o A Vg 1€ T Ea by (] * gy 040, OfS WMt GO O O XA RO AT N
T s B Ll R R S S AR AN SRR A DB ORI

»
b

entry queue is not decremented prior to
accepting the Start_ Write eatry. This
depends upon a class of First-In-First-Out
(FIFO) task scheduling that prevents interr-
uption of control task execution until it is
blocked by the Stop_Write entry even in the
presence of an expired timed entry state-
ment. The dependency requires that expira-
tion of the delay does not resuit in run-time
action, viz., changing the state of the delayed
writer task, until the executing task is
blocked and a new task has to be executed.

This dependency does not preclude suc-
cessful execution in a different environment
where task scheduling is not guaranteed to
maintain the stability of the value of the
COUNT attribute. For instance, an RTS that
implements a preemptive class of task
scheduling may resuit in the value being
decremented after the evaluation of the
while-loop but prior to accepting the
Start_Write entry. However, because of the
priority of the writer tasks and the
Start_Write entry statement following the
expired delay, the number of queued
requests cannot decrease. Consequently, pro-
gram transportability is achieved since execu-
tion is functionally equivalent in both
environments.

When the above implicit dependency is
not clearly stipulated, the control task may be
mistakenly considered to be strongly reusable
in the new environment on the basis of pro-
gram transportability. An attempt to reuse
the control task with .. different procedure for
writer tasks can have aberrant execution
behavior in an environment that does not
guarantee the stability of the COUNT attri-
bute. A simple change to the timed entry
statement that removes the Start_Write fol-
lowing the delay can cause the entry queue
count to reach zero. The control task is now
forced to unexpectedly wait at the
Start_Write resulting in disruption to perfor-
mance since the reader tasks are dependent
for execution on a write request. This is con-
trary to the guard specification of the enclos-
ing select statement. In a worst case situa-
tion, when no further writes are requested,
the control task is blocked indefinitely from
execution.

Epilogue

This paper has presented a refinement
to the concept of reusability. This

refinement provides insight into understand-
ing issues in writing reusable Ada software
components for MCCR applications. Compo-
sition orthogonality and independence from
the Ada RTS implementation are identified as
useful criteria for assessing program reusabil-
ity. Understanding these criteria will allow
varying degrees of program reusability to be
specified in transitioning MCCR applications
to the Ada language. Composition ortho-
gonality is important because many Ada
features that facilitate program reusability
have been avoided or unavailable in past
MCCR appiication software that have com-
monly relied upon simple constructs with
predictable performance efficiency (Bassman
et al 1985). In addition, dependencies on the
implementation of the Ada RTS to imitate
low-level control of processing resources can
thwart strong reusability achieved through
composition orthogonality.

In managing the transition, software
reuse should be safeguarded by balancing
program reusability with performance during
the design phase. Furthermore, reusabie Ada
software components will be facilitated by
language impiementations that are guided by
the specification of classes of Ada Virtual
Machines for MCCR applications and practi-
cal restrictions on Appendix_F of the Ada
RM. This would increase the likelihood of
formally certifying the degree of reuse for
software components (Cohen 1985).

References

Anderson, C.M. (1985) Reusable Software -
A Mission Critical Case Study. AIAA Com-
puters in Aerospace V Conference, pp 136-
139.

Bardin, B. et al (1985) Report on the L.A.
AdaTEC Ada Fair'84’: Compiler Test
Results. ACM SIGAda Ada Letters 4, No. 4,
pp 52-58.

Bassman, M.J. et al (1985) Evaluating the
Performance Efficiency of Ada Compilers.
ACM DC SIGAda Washington Ada Sympo-
sium.

Bentley, J. L. (1982) Writing Efficient
Programs: Prentice-Hall.

Braun, C. et al (1985) Ada Reusability
Guidelines. SofTech Inc. ., 3285-2-208/2.

ot
)

.

e
-

ks

.l"l SN
R % 5w o' e ot

«

Ay

-
l:":l.l.

Al

»

}':

Cohen, N. H. (1985) Verified Ada: A Key to

Reliable Software. AIAA Computers in
Aerospace V Conference.

Department of Defense (1983) Reference

Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A.

Friedman, F. (1985) |Issues Affecting
Software Productivity due to the Introduction
of Ada. Computer Sciences Corp., TR No.
SP-IRD 4.

Hood P. (1985) Cyclic Executives: Pros,
Cons, and Relation to Ada. SofTech Inc.,
Working Paper 1123-WP1.

Lubars, M. D. (1986) Code Reusability in
the Large versus Code Reusability in the
Small. ACM SIGSOFT SEN 11, No. 1, pp
21.28.

MacLaren, L. (1980) Evolving Toward Ada
in Real-Time Systems. ACM SIGPLAN
Notices 15, No. 11, pp 146-155.

67

Nissen, J. & Wallis, P. (1984) Portability and
Style in Ada: Cambridge University Press.

Oberndorf, P. et al (1982) KAPSE Interface
Team: Public Report Vol. 1. Naval Ocean
Systems Center Technical Document 509.

Pappas, T. (1985) Ada Portability Guidelines,
SofTech Inc., ESD-TR-85-141.

Philips, S. & Stevenson, P. (1984) The Role
of Ada in Real-Time Embedded Applications.
ACM SIGAda Ada Letters 3, No. 4, pp 99-
111.)

STARS (1985) STARS Workshop on Reus-
able Components of Application Software.
Naval Research Laboratory.

Volz, R. et al (1986) Toward Real-Time Per-
formance Benchmarks for Ada. University of
Michigan.

GOOO000
2':'5'-‘!‘e‘!’o‘!'ﬁ"i"%'

\!

LA N 3‘;‘

¢

L 2

(0

.
8040

A. GARGARO
F. PAPPAS

Mi.ACH 24 - 27, 1986

oy Q :

STARS WORKSHOP

F
LY %Y

A ed

ISSUES FOR THE TRANSITION OF MISSION
CRITICAL COMPUTER RESOURCE APPLICATIONS

o’
UNDERSTANDING Ada® SOFTWARE REUSABILITY

Ada® 1S A REGISTERED TRADEMARK OF THE U.S. GOVERNMENT Ada JOINT PROGRAM OFFICE.
3

O
o 68

T AT A NN B B0, T PR AR P AN e Rt N N b ; A
T A G R e e T e R A SRR T S R R ettt ittt docatelote v

3

0"'0"3! N "‘ '0.5‘

REUSABILITY TECHNOLOGY FOCI

CSC

f GENERATION <~ INITIAL FOCUS

—=— APPLICATION

':0": [N 9“,;'4‘1'..:'." (Ol

Yoot
'n, .4‘

8%)
’.3‘ .' '::' .

69

,-'h

h}.’t

o."!

l.;.l "l “l n‘.

DISTRIBUTION

RN

o i!‘u

6040-1

‘0 3y s ‘.. 0 i“‘

8

60402

S
PROBLEMS

G

oL 4

<#Q" Py

-

o %5

[SRS R0 3)
LOWERING POTENTIAL FOR GENERATING REUSABLE CODE UNITS

o EXECUTION ENVIRONMENTS
o PERFORMANCE REQUIREMENTS

o LANGUAGES
a APPLICATION DOMAINS

= REUSABLE CODE GENERATION IS NOT A WELL-DEFINED DISCIPLINE CONSIDERING
DIFFERENT

s REUSABILITY NOT AN EXPLICIT REQUIREMENT OF MANY MCCR APPLICATIONS,
s MANY CLAIMS REGARDING Ada LANGUAGE AND REUSABILITY ARE UNPROVEN

CSC

)
e
o

b

ag® { N et by » »
R AR KN B o D KIS S TN) RN '-?H AR

ittty

.

el

g
L
A

A,

*0‘..‘
o Y
=0
) P o

523

o FUNDAMENTAL CRITERIA FOR EVALUATING REUSABILITY
o APPLICATION DEVELOPMENT PRACTICES

o PERFORMANCE EFFICIENCY

=
2 &
2=
SN
uw N
832
Sa
w =
_,l.u
aw.
;‘,c::
<
=
oS
e 9
2
> <
j..l
=3
=
= 5
.‘- &c
= =in
- =22
[oe] -0
=) = =
w <
22
5g
.
=)
-
<X)
"=-'u
=
-
aZ=
22
< Q
th =
&€ A
w2
Q <
2
— =
a

5%

CSC

Ly
L

’I' Ca
»
»

‘J.

A

(
.. -‘
hEY
el
alr

G
g
.
1

P iard

!

AY . . l \, a?,’ I Oy " . . i. ‘ .‘ |. .. . ‘. .. q' I' avs I. . ‘ I. " ' ll, ..| '. LA l‘ l ' ’ "‘
' L) ' U 9,) Y l

‘..') ' Q]

A .l’ !l"

6040-4

v v t‘v.

APPROACH
o EXISTING TECHNIQUES WILL PERSEVERE
[STACHOUR ET AL] REUSABLE CODE UNITS TO MCCR APPLICATIONS
ASSIST IN THE TRANSITION TO THE Ada LANGUAGE

o THE USE OF CHAPTER 13
= DEVELOP A REUSABILITY HANDBOOK FOR MCCR APPLICATION DEVELOPERS TO

T
= LIMIT SCOPE TO RESTRICTED MCCR (REAL-TIME) DOMAIN
= CREATE PEDAGOGICAL EXAMPLES TO ILLUSTRATE LOW TO “BUILD AND FIT” |

= REFINE EXISTING WORK TO RECOGNIZE

CSC

® 72

[. ’ -
DO O O O O O O O RS X S L IO OO OO O OO MY IO 0 0 - 000 D
OO R KA AC RN SO OO KNSR GOSN KRR IS X0 IR AL A A KRR RS SN D DR RN

VAT L S IR M s [DRAIU WA T ¥ nlel s NS

2 ?
o

)
604085

allx

-

e ey <
L Pa

o 4

O

CLASSICAL REUSE OF A
ENHANCED REUSE OF A

i
\

COMPONENT REUSABILITY

S 4

Y@ L)

CSC

73

) 6

. b)
'.‘ ‘.‘c Ll 2 M) 'u‘ .g ‘l -' . ’0‘ ‘A.Q D‘\'l‘ 'l" UG 'i,ﬁ".l

U 3 2
At ‘. .y l‘, it .A’o 'y 'l’ A “‘l‘l" o \f. Y .l‘ Wy ".} R "o f_t‘-g:h o X t"\ ‘| ey 3

e
K4
6040-8

”
REUSABILITY

TEST HARNESS, OR “SCAFFOLDING"” [BENTLEY]

PARTS TERMED COMPOSITION ORTHOGONALITY

o TRANSPORTABILITY OF PROGRAM, i.e., ENCLOSING CONTEXT,
RUN-TIME ENVIRONMENT" [KAMRAD et al)

o FUNCTIONAL INDEPENDENCE OF PROGRAM'S CONSTITUENT

o INDEPENDENCE OF THE IMPLEMENTATION OF THE “Ada

= REUSABILITY CRITERIA SPECIFY

CSC

74

(N |
SAAOA0A] RGN AIAAN (] 0 ‘)
Sttt alilnlidnit eI gl nininlaini bt alntedainiatntelatatniiiatntaintedalndelol et

A

A
=
40407

*OPTIMAL
REUSABILITY

COMPOSITION ORTHOGONALITY

-
=
=
(=<
<<
f—
-
Q
-9
(7]
-
<
(-
™

g

DEGREES OF REUSABILITY

RUN-TIME DEPENDENCIES

ML

L 75

A A i ¥ UM NN M O RO O 08 WD MW AN % o
3“'\?!".5‘..“‘,"@ X i,o"‘.’t“,"-’ \'l’l'!.p‘t‘,c l,,n'!@'t‘,.",!'l‘,_!.l.u':.-'l.!'\!a‘l‘!‘i‘,":‘l:‘&a‘:’t‘:’ v l.!'l,ai&l.&l !':‘.!"‘.!‘:‘!‘?‘!.A""‘!':.:.t‘!.fé‘f‘!‘t‘hﬁ!’{"’f‘!”‘?"'?‘e"':‘!ff‘!&‘

T
60408

TRANSPORTABILITY

A

RM — DOES NOT PRECLUDE GENERATING CODE THAT CAN BE

o FUNCTIONALLY EQUIVALENT EXECUTION IN COMPLIANCE WITH
OPTIMIZED OR IS SENSITIVE TO EXECUTION ENVIRONMENT

o EXECUTION OF COMPLETE PROGRAM

derats

= TRANSPORTABILITY CRITERIA INCLUDE

CSC

. P -
.’ P W 4

< -
-
gv’i’,u

i

-
-
»

76

o o P

00 U A 1
B L R o O O M KM DR OCTEROERNUN K O R R N R AN

=
5

-
6040 9

SOURCE CODE MODIFICATION

rHM COMPLIANT

’
J

NN (T\:‘V

ENVIRONMENTS

DIFFERENT
EXECUTION

FUNCTIONALLY
EQUIVALENT

DEGREES OF TRANSPORTABILITY
EXECUTION

TRANSPORTABILITY

®
BASELINE EXECUTION
*TOTAL

CSC

o2,
>
;g

L 77

pele] ‘ s \ , : o NI
* g T ¥ ;) s h 0 OO ON O O OO A D O OO O B OO ON DGO
T T s e S e dieitge ettt e b it T e e

Od
;:I!
]

01 0v09

M KN D

D
i

oy P

i

ONOYLS ONV ‘IAILI3 443
‘WYIM SV G3141LN301 38 AVIW ALINBYSNIY 40 S13IATT IT18VAIIHIY ©

t’q

SLINN 3009 379YSNIY 40 NOILYHINID TVINHOS
“o'1 'A11719VSNIY JAISSIUIDY $IZISYHIWI LVHL NOILVHINID
1INN 3009 40 INIONVLSHIANN SILOWOHd MIIA dN-W0LL08 ©

SLINNM 3003 LN3INLILSNOD INISNIH 0L SLNIWIOAJWI
TVILNILO0d ONIGIOAY "o ‘ALINNEVYSNIY JAISNIIIA SIZISVHINI LVHL
NOILINYLISNOI WYHIOUd 40 INIONYVLSHIANA SILONOUS MIIA NMOTG-dOL ©

53
2
"
.
.'“
&

>
55
7
g
X o

:SLINN 3007 INILYHINID HO SWYHIOUd INILINYLSNOD
404 VLVH3IAISIA ALI1EYSNIH SAIANOD ALITYNODOHLUO NOILISOWOD =

NV‘)
et O

TN

‘t".au..

Wt

i

ALITYNODOHLHO NOILISOdW0) NSO

\ N . N
¥ :'I’:’l 0"‘.!" 0o !'l’e.""l.:‘“

|
]
()
l;’;“l“'.’

) Lo Z X B oS SrEELS T RN PF AL NI I T e
RSE) @ SRS P L L SIS PSS S O L SR RS e N e)

- R -

1||||Illlllllll|llllllull|’

o 'yaseag ™~ Areurg pua
g wmes
1 :_._N_.m..a
J pua
Julod T pIN Wmal
aspe
i+ wmogTpIN =t dulogTye)
uay) Juswsl3 > (wuiogd ™ PIN) lqel yisie
_ ‘L - wiod TP = Julod iy
_ e (uiogTpIW) BlqeL > Wew)3
'/ (wmog lyliy + o ye) =: Julod PIN

dooj Jwog iy => 04" Yo epym
ufieq

‘aAnisod : Julog PN
‘sjuawa|3 e|qel T Xep =: salisod : Jutod Wiy
I =: 8ANIsod : Julogd e

s jumep wmas (adA ._.lz_a__:._m:l_ : Juewa|3) yasea§ Azeulg uonduny

‘edA] TJuawa|] Jo (s)uawaj3 ejqel xew " -) Aense : sjqey

ALITIEYSNIY HYIM NSO

&

‘BT LR, RBEIPLT - BebrScor oo xR 2 2 Ll A W LS D e T LRGSR (eerSrSTalyy TeC O O R @t e e

M,

AN "’v X l';."? Lo

0
,.i.f.l'ﬁ L

A
Liibrtny!

.]
,s"‘.a",o : “.

;l

‘ \J
Qo'le

i

!

DOOOOCOG
"'n’t’i‘!'t‘q'!’t‘l’!

Y
r‘:':':'t :'&

AN

-
J

UOOTOR AN,
a‘.'t‘.‘l‘y'l‘r‘t‘.'b

1 L)
At }!.QIJ"'A,._D

€1-ovoe
‘yaseag Aseuig pue
T pun
! pua
‘puno g TIoN oSiE)
(50
‘pu3 T ye timal
Uam (pu3Tye) ejge) = wewejd Uayl puv pu3 By = puz ey
:doo) pus
7 pue
Jmog T pily winjal
(50
!(ymod " piwy) oang,edA) T xepu) =3 puzTye
Usyy Juewer3 > (1wrogpuy) elgel Jisp
‘(sutog " pIW) parg,edA) " xepuy =: pu3 iyby
UIR (Juog i) siqe) > uswely §i
(2 / (pu3Twbiy) sog,edA | “xepul +
(Pu3TYye7) sod,edA| "xapu)) jsp, 0dA) Txepu} =1 Julod” PIN
dooj pu3wy > puzTye] WM
a5
‘punojyTIoN e
e 10,0081 > 5wy 000 |
uflieq
‘edA g "xepuy : 04T MW
s, 0q8] =: edA] xepu) : pu3j why
heng.eiqel =: edAfTxepuj @ pu3z Yo
1 9dA) "xepu) uImal
(edA | Tyuewey3 :juewey3 ‘edA) Tejqe) :ejqel) ydmwes Aseumg UoNIUNY

D S { t
AN IR DR A A

W

Q)
{0

!

80
Rl

.
=

o

-

NI 100
HIAHE S

(]
J-.Q'n..ﬁ'

KX

.‘l";b,‘ Q,"

\
AU

(f

Y
[

AN

A0S — ALINIGYSNIY INOYLS SO

4

Y,

vy,
A",

QUBOMICS
I'A’l‘!?"'i!"n?l’ L]

A0
U OSAR,

SO
i\ .tl. 0

3
- .
-

XIG
?" p?b‘

0

TL OY09

%0
KON

ORI R S IR

“ ‘ajejdwa | “efieyaeq "ydseag” Arewg pus

]
R

Y

4 ‘uondedxa : puno4TIoN

O
‘h‘?‘,

OQ'L

‘adA] " xapuj wmas
(edAf Tyuawa3 uewaj3 ledA)| Tejqe) :ejqe]) yaseag Aseurg uonaung

=
l‘,:l.)

s1 ayejdwa | “efieyoey yareag™ Areurg efiexoed

Y W
fostin!

W

o,

.t

! <> ¥ usejoog Winjal (adA} Tduswey : wfity ‘Yey) ,,>,, UONUNG YUM
tadA] Tuewa)3 J0 (<> obues edAj xepuj) Kemesy edAj "ejqe) adky
(<>)%1 edA] "xepuy 8dky

‘ayeand si adA | Tyuewel3 edhy

o
a0
-
-
-
a

SN Db

Jueuafl

AN Y,
AN :"'?"’”t‘,' :'t

NOILYVIIH133dS — ALITIGYSNIY INOYULS Omo

e

b‘!\

vy
o ‘Q.

X

&
o

- .
i
£

EX AR sy o n Bl b w T EEELTEL Lo A AR ARRAARE - L ARSI e XX ATATAAY .

EEE @027 07 R e ZA s S SRNE NS 2N @ Py vt e s TN TN @ K oL X

SIIINIONIAI0 SLH INILIITINOD 40 ISNYIIE SWIT80Hd 0L ALIAILISNIS
S3ISYIHINISSLY LNIHIJ4I0 HIANN G340TIAIA SLINN 300D ININIGWOD ©

JTEVHINTINA ATHVINIILUYL SNOILVIITddY HIIW ©

SILSIHILIVUVHI
ALITIAYSN3IY 1VE019 JHOW NI N3AOIH N3140 3INIONIJIONI ©

ATLIOINdWI HO ATLIZITdXT '03INA0YLNI 38
AVW ALITISYSN3IY ISINOHIWOD LVHL SLY BPY JHL NOdN SIIINIANI430 =

o

W, o
"{“

‘f,cf‘ o

(S14) — WILSAS INIL-NNY
epy JHL 40 JINIANIJIANI Ummv

n

T P

- - P P P
: ﬂunl’nl-(!-
- .I ® --.-.--4- .- .t ‘Jnﬁ >

...............

& *y
[-'As.;:.'} k.

U8

> - :{m&
f
O o S

3

17

.
| S
Ty

w
. \.~:'..

A TIPLE 3

7z
=
()
=
Lla
—
Q
)
(72
e
(= =
Q
=
<
-
=
=
o]
<
&R
-
Lid
: (= =
o =
Ghd
—
Q
Q.
=
(o
()

&

83

-

&

it
\\ /

(=)

&
_—

POTENTIAL RTS CONFLICTS

EQUIVALENT FUNCTIONALITY

C} UNEXPECTED FUNCTIONALITY

! Tl 80 i DDA \ OO ONONING
L A R T R D AR TH 8 Dt O D DR e o I O e et e 1 e el

& 8: &]

91-0v09

HETTT
819} SEM 13)11M 81)) 18} 91EINPUL O} 8)qRIIEA posuys oyepdn --

MUMTUNS T jonve) T My

uny"own) “aum Kejap
10
1192 wo1y je18wesed (EN)IE YIM ajqeiiea paeys eyepdp --

M UNS Cj0Rue) MYy
LTI

$y38) 10)M Aq pejies exnpedsosd --

33808 pua
‘areuiug)
T
Jpw
iFo pus 3
g doyg adaan
‘supm " ung o3
1NNOJ o Aupigais uo Aduspuedep NaMdwy <<< --
dooj 0 < N0y, MUMTIMS BIGA
sl § = s1opesy "eANdy 1
] - uepEIY T eANIY =@ S1pERY eANIY
‘pray " doyg 1deaoe

10
138)08
ajqeIIRA poseys 0) 536308 8)am/pess Buyjjonued ey —

JONIANIAIA SLY LIDIdWI NSO

s et Ny ey i PR o o R A A A e I S A
SN R v e s] @17 L s S e B RS SN @ VLSO @PRRR s @

O N W A

41 0v0p

SNOILVTOIA ALITISYSNIY ONIAJILNIGI HO4 SNYIW V SY |
03HIHVY3ISIY 39 ATNOHS SLINN 300D 3718YSN3IH 40 NOILVII41D3dS TYINHOS ©

ALITEYSN3Y HO4 TVILINILOd
JSYIHINI GTNOHS SINIHIVIN TYNLUIA BpY 40 SISSVTI 40 NOILVIIA1IAdS ©

TIAITNIISIA IHL LV AIINAOULNI 38 ATNOHS ALITIEYSNIH JAISNIF3Q ©

-JHV SLINA
3009 3719vSN3IY HO4 TVILNILO0d ISYIHINI 0L SNOILYANIWWOIIY J141I3dS =

Q3LVWILSIHIAO NI38 IAVH AVW JIVNINVYT BPY IHL 01 SNOILVIITddY HIINW
ONINOILISNVHL NI SLINN 300D 378VSNIY ONILVHINID HO4 TVILNILOd 3HL =

SNOISNTINOI NSO

e -

.‘.b-.:v

a P

K e/

-

)

e e e G e e U
iy T d & A A

- >
e

oy

P

XA K Ky GO 0 2 gt

- v

.

=3
P Nl 4

4 "
PR R iNE s Y el

e e e i

e

vy

=

)

; 1
SR H. l ml-‘:

TE VW NN ¥ W

COSMIC — NASA'’s Software Distribution Center

John A Gibson

COSMIC
Computer Services Annex
University of Georgia
Athens, GA 30602

Abstract

NASA and the University of Georgia established the Computer Software Management and
Information Center (COSMIC) to collect and disseminate computer software developed by NASA and

its contractors.

industry, educational institutions, and government.

Text

The Computer Software Management
and Information Center (COSMIC) was es-
tablished by NASA and the University of
Georgia in 1966 to function as a software col-
lection center and to provide dissemination
service for computer software developed by
NASA and its contractors. COSMIC has
received and processed nearly 5000 computer
programs since its beginning. Currently over
1100 programs in the inventory are supplied
to business, industry and educational institu-
tions as well as to other government agen-
cies. Programs are priced at a fraction of
their original development costs.

Each new computer program and docu-
ment and each update received from NASA
and NASA contractors is screened and
evaluated for completeness and application
potential before being added to the inventory.
This process involves checking for syntactical
accuracy through compilation and/or assem-
bly on a host of systems available at the
University of Georgia. Each program is
assigned appropriate subject category codes
and index terms before an abstract is
prepared and the program is made available
to the public.

The software submitted to COSMIC
reflects the varied activities of NASA which
involve basic research and development pro-
jects as well as projects directly related to
space missions. Software developed in such
areas as structural mechanics, computer

KRNI

87

The current COSMIC inventory of over 1100 programs is available for business,

graphics, mathematics, communications, and
thermodynamics broaden the scope of pro-
grams in the inventory. Many of these pro-
grams can be directly applied to secondary
use with little or no modification. Other pro-
grams can be adapted for a very specific pur-
pose at substantially less than the cost of
developing a new program. COSMIC sup-
plied the source code with each program so
that its capabilities can be modified or
extended as needed.

The COSMIC customer service staff
provides assistance to users in locating pro-
grams or groups of programs that best meet
the user’s needs. This customized search by
the COSMIC staff is provided at no charge to
the user. The COSMIC staff is trained to
assist users in locating software and will assist
in locating specific public domain software
packages even if they are not part of the
COSMIC inventory. For users who have a
general interest in software or for broad
application needs, COSMIC pubiishes the
COSMIC Software Catalog. This annual pub-
lication is a comprehensive collection of pro-
gram abstracts, organized into 75 subject
categories and includes a keyword index and
an author index to aid in the location of pro-
grams.

Our users provide the best exampies of
how NASA software is used. These exam-
ples include: 1) using the application package
essentially as-developed for a similar applica-
tion in industry, 2) converting the application

Q Y (¥ N QLI
'l .'1 o‘.l‘\'\ \'t‘. N ‘I‘ 't‘g'(: l...i"'i‘"l |'i‘ t.q. ‘u.q'l’o LIS l‘._&,9‘5;".,0}‘,ﬁt&'i")‘l“‘ht'k!'..!“?lhsvh?“i"‘

[~

- P s o et _m e
] o i g 1&!
P, "
L38 ¢ S T of J 'x" e 2 %8

’ -

X) s

45
s

l“‘t. JK.

,.
e

AL ISR SR

S
‘s

AR

L g

P

it

S \ae 0 06 B S B 4

o
e
"

%

AL,

-

package to operate on a different machine, 3)
and taking related routines from one package
and applying these routines in a different
package. COSMIC’s service includes distri-
bution of programs and documents between
NASA centers, so our users include many
NASA staff members. Approximately 25%
of COSMIC’s distribution involves the
transfer of software to NASA centers and
contractors for reuse on NASA projects.

In 20 years of experience operating
NASA’s software distribution center,
COSMIC has had many opportunities to
learn. The lessons we have learned cover
many of the items mentioned in the
workshop announcement letter under "library
experience” and "logistics of reuse”. The best
advice [can give your library committee is to
keep the number of rules, directives, restric-
tions and paper work to a minimum. Make it
easy to put programs into your library. Make
sure that your staff will be friendly and help-
ful in locating software for-a user. Make sure
you have an efficient system for transmitting

88

the software to the user. Do all your screen-
ing, testing, quality assurance, performance
measurements, etc., before the software
officially becomes available from the library.
Define the technical or user support available
for each item in the inventory. Last, but not
least, obtain information from users that
reflect the benefits they realized from using
the software.

The actual utilization of the library as a
place to submit software as well as a place to
obtain software will depend on your ability to
market your services. Our experience shows
that this effort, both to obtain software and
to promote the use of software, is a continu-
ing effort that involves significant resources
of staff time and money.

The concept of a single source of com-
puter software, whether routine or application
packages, is not new. NASA has 20 years
experience in operating such a facility,
COSMIC, at the University of Georgia.

&

) AT A LT T T T O Y Py Vel ‘--‘\, Py \ (LY 3w TP DOQ MU\ 9%)
A N ' ‘ L Tt !‘c‘e‘:'- SOOI SOOI A DRI OL R M A X n.l'.',l'cfl':ti'o?‘ml'ﬁa 9;:“{0‘;&%

[
e

.r:g;r"d_"'.:. - .

e
. ™
- -... y

-
-

cCOSMIC*®

NASA’'S COMPUTER SOFTWARE MANAGEMENT

AND

INFORMATION CENTER

89

A -
RO B RO N AV A SEERE RGO SOOI NI BOSCHIOTONOONN
RN O?iilflp‘?O:‘?N».‘?*q’:u‘:"(‘:’:':'a"t's‘k"s.,Jt‘« 'd"\'-‘Af'*,.ﬁ'#!z'_;“?f’—‘ﬂ:‘g‘-’.,_J‘?‘."ﬁ' Ly o"-kﬁﬁf‘,’u. ROBLSOOOIONUODONN MY LONIREPOR KL SONLCOR

!: E)

.:R:‘\'Nt""‘l‘ri .

—

v

e
‘SN

A National Aeronautics and
%: Space Administration

X ’ "The aeronautical and space activities of the United States shall be

.' conducted so as to contribute . . . to the expansion of human knowl-

Vi edge of phenomena in the atmosphere and space. The Administration

he shall provide for the widest practicable and appropriate dissemination

:_)‘ of information concerning its activities and the results thereof."

ot -NATIONAL AERONAUTICS AND SPACE ACT OF 1958
o

AT,

2

; j (AIPICAN; AR DADANIAUGOG0CIODIOGLDUDUOR O ANIIOUOLIOLINE
R T S e S e R M R D S RO O S DN DR OB D OSSO A XE R M ISR AU GO S CIR

COSMIC

» G b ON

Jeo |
o ¢

R

s
v
-]

(R

o v
P o)
-

@’

D
-

T
P2 %)

P

P
e SV 2% Yo %S
(4 € ']

OO0 ;
RONGE.OnON000
RGO BON

R OB AR

ACTIVITIES

Technical Screening
Promotions

Order Processing

User Support
NASTRAN Maintenance

Benefits Analysis

4 ¢ g & ¢
(il AR e e

AN
My OCN
s e

AN HARDWARE AVAILABLE FOR PROGRAM CHECKOUT

: CDC CYBER 205

2
3 CDC CYBER 845
b CDC CYBER 850

it IBM 3081

DEC VAX 11/780
UNIVAC 90/80
MICROCOMPUTERS

P
R\ e e

“.-t“::-“"x

21O LS

.
-

L™ x . o
. .K:‘&{\-\;

LM
MG Y OO0 0 WO OO0 S AN DI D ey e Bttt
AN O RO \‘fv!'fl:‘?Q OGSO R ifg‘bfc'l‘@"tw"v:o’i?%'ﬁm’.'«").!'ﬁ.-‘."-’d'? ORI e »‘?if“r.& Attt

R DOCUMENTATION REQUIREMENTS

o Problem / Function Definition
Method of Solution

i User Instructions
Implementation Instructions
ko Sample Input / Output

o Environmental Characteristics

o Other Appropriate Information

ot
a8
S5

o -
IS

(&
&

93

DOUOOO)) &

? ATe 4% 4 ONOOONOOU 000 AV 070 0 T e T T 47 0
J O N A N T A e N S e T e S A DX R XSSO

2t

CLASSIFICATION OF PROGRAMS

. .J-

Excellent quality program. Qualifies
as Tech Brief. Must be NASA funded.

= N

>~y

Program and documentation meet
publication standards.

)
a0
W

Programs returned to the submittal site. &

PR

-
-

D 2D

-
o

Programs and documentation which are
incomplete and additional information
has been requested.

e s
- ‘ S

L4
RO I ot A a0 OO OUOLIN I AN AOLIOL I IO 20 OOLOLICAN \) 0000000
Lttt i iy N .‘.*~.‘.*».‘,A'\'Js'.‘h‘ﬂ'zg’nf.‘ﬁ’@"o"«".\‘.‘a'h'c‘a’&‘;‘x‘!ﬁ‘:’/_‘?’u‘:h':'n OGO M ORE ‘:‘";‘!‘a"*‘n""e‘)te‘ﬁa"'-

o PRICING FACTORS

X A K
.M ..

£
s

Machine independence and / or vintage

Level of programming or maintenance support

Quality of supporting documentation

-
-
r

A5 A @

~

e Program sales potential or history
o Program functionality

o Program size

\
1

A

- 95
L4

1'.‘
0
g . . .

] - - o A
R v D000 WOBOTON000 oy () OO IO AR N
‘w""*?‘ﬁt',‘o:'f"".v:‘.at".::"os‘m'fl"’u"l.‘!‘u‘!u".l." ﬂ*":'!':".h‘Ja'zh‘!'-"é‘":‘.h ettt Ut ettt tiede i Rt uindnint et it il QUL

llllllllllllllll

-
- e

e
-

72

A

=

EY ﬁ?:ﬁ;:..‘..}- °
- o] B

»,
L

N Ear

R
s

vu,_
e
AAALS e

F'y
A &)‘.

B

COSMIC PERCENTAGE DISSEMINATION
BASED ON DOLLAR VALUE
1984

DOCUMENTS
CATALOGS
4%
PROGRAMS
27%
NASA
25% OTHER
5%
LICENSES
38%

96

W

o

‘ ; % 2 W ¥ A M W) ot DN ° J O \ 0 QOO
R T e e T o O R L et el s

ﬂ

WASHINGTON DC MAR 86
UNCLASSIFIED F/G 12/5

a

28 M25 ’ '%

g

fle i
=

="

IL2s flis e

I

o
EFEEEER

4.0

EFEE
FF

Poarw

'

(5 MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

LBS Jan o e 2ee e

X).‘ "' !" " ‘ . ." ." » »
D CRTR Al et ORIV Y ' ‘
SR A A t‘»,A'»!t'!'s‘:‘n‘f‘s‘t‘q‘!‘qﬂt‘u'!‘:C!“",‘:'t‘:b‘.‘::"::"t:",:'i’\' :'2:'0’.56‘ ‘:’&‘:”?“!‘.‘ e
AL R RCT R QO 8 R 800 L85,

W TR T

THE DESIGN FOR REUSABLE

- SOFTWARE COMMONALITY L
, 2 Norman S. Nise
R4 Chuck Griffin
:‘. Rockwell International
%

PR NS - > i e
5 AR SRAR T (Rt
P %JM-‘

migens
G

O .
bl

q.

e'-

o~
.ﬁ

ittty ".o".' A l'.. L0 aoyaled

Abstract

This paper discusses the design of software packages to improve their degree of reusability. The
degree of commonality both across applications areas and within applications areas are tied together to
Jorm a commonality matrix against which software packages can be measured for potential reuse.
Further, design techniques to improve commonality are explored. Emphasis is placed upon designing
software with the widest domain of applicability in order to realize the financial benefits of reusable

software.

Introduction

By now it is a well known fact that the
demand for software is increasing dispropor-
tionately to the supply. More specifically, the
demand is increasing at a 12% rate compared
to an increase of only 8% for software supply.
The problem is exacerbated by the fact that
software costs are also rising - astronomically.
The United States Department of Defense
estimates that software costs will rise to $32
billion per year from a modest $2.5 billion in
1980.

Software development methods have
contributed to the software economic prob-
lem through maintenance costs that represent
50 to 80 percent of the total cost while design
and development are only 20 to 50 percent of
the cost. These methods have also resulted
in code that is difficult to modify, contains
errors, and is produced with low productivity.

The DOD and its Software Technology
for Adaptable Reliable Systems (STARS) ini-
tiative have already begun to study ways to
alleviate the above described problems.

One promising solution to the software
problem is reusable software. Reusable
software includes reusable requirements,
specifications, design, code, documentation,
etc. It can be used between applications with
little or no modification. It can be imported

* Ada is a registered trademark of the United
States DOD, Ada Joint Program Office.

97

"A‘ ‘1' L‘c".l“’ UDCCN MO

lql.la

and used as part of a larger project. Reusabie
software will cause a reduction in manhours
required for the design, development, testing
and maintenance of software.

Two major factors have prevented the
idea of reusable software from becoming a
reality. The first was the proliferation of
computer languages. It would have been a
difficult task to keep and catalogue software
over the domain of many languages. With
the developme..t of Ada® along with the
DOD’s decree that Ada will be the higher
level language for all embedded systems, the
outlook for the future is a single, widely-used
language that can be used to develop and use
reusable packages. Ada itself was designed to
be used for the development of reusable
packages.

The second factor has been proprietary
interests on the part of software developers.
There was the fear of not realizing maximum
profits if software was shared among other
members of the industrial community.
Develfoped software was hidden and not
shared. STARS is now looking into this
problem by trying to establish incentives to
develop and use reusable software.

We can envision, some time in the
future, a reusable software library where
software "parts” are cataloged and available
for use within larger programs.

OO . UGODUON

Vo K7y
i “a ,n".ﬂ \l

L)
'I .n'i,a.*b ML Wt i'i', Py 'l .' W

6
B

£

I

) {J"rl‘-'".’-"

il 1o

WURNE

[SV R B ¢

LR

»

-
el

]

oot LN A AP)

Y
P
-

ol

VAl @ ot

(Y™ e
(R 1)

) " "' RN T v.‘?::P‘,n ! "u:"cel'v- 3300

Commonality

One of the factors that will determine
the success of a library package will be the
degree of reuse. The more times a software
package is used, the more we can rely on a
reusable software system to solve the
economic problems previously described.
The degree of reuse depends upon the
domain of applicability of that software. That
is to say, can that software package be
depended upon to be used many times? If
the software has wide applicability. either
across many different applications or wide
applicability within a single application, the
answer probably will be affirmative.

The amount of reuse to which a moduie
is put through is dependent upon letting the
user know of its existence and the domain of
its applicability. Thus, it will be important
for the designer of the package to give to that
package the attribute of maximum applicabil-
ity and properly classify that package as to its
range of applicaiion. Again, the designer
must not only build the attribute of wide
applicability into the package, but also must
communicate this attribute to the user of the
library.

It is obvious that several pitfalis can be
encountered that will diminish the economic
benefit to be accrued from the use of reus-
able software.

(1) wide applicability is built into the A
package but that attribute is not com-
municated to the user through. the
library classification system,

(2) a package is designed that has wide
applicability over a narrow fieid of appli-
cations but could have been designed to
cover other application areas,

(3) a package is designed that has narrow
applicability but could have been
designed to have wider applicability
either over a single applications area or
over many applications areas.

Thus proper design and classification up
front is imperative. Narrowing of the field of
applicability will lead to the proliferation of
modules with the resulting increase in cost
along with the unneccessary complication of
the reusable software retrieval system. More

98

N OO)
'v"‘uﬁ:‘;..h‘ l‘.’»‘!’g‘!‘i‘!h" ..a.l.!.l X N .'»‘90-‘!'@."‘ "'l‘ 'l

software will exist and maintenance costs will
increase.

If a software package is classified as
application specific, the likelihood of the
package being applied outside of that domain
will be small. For example, software
classified as being in the domain of account-
ing, will be used only for accounting. That
package will not be used for missile systems.
If the package contained sort routines that
could be used outside of the domain of
accounting, the savings would not be realized
in this case.

As reusable software libraries are es-
tablished it is imperative that software placed
into these libraries be designed with as large
a domain of applicability as possible.

For example, a routine to add two
objects together couid be very specific and be
applicable only to integer numbers. Other
packages would then have to developed for
floating point numbers, fixed point numbers
and the like. Each package will have dimin-
ished reuse and each package will muitiply
the costs of development and maintenance.
We cannot overemphasize the fact that
library package development use every tech-
nique possiole to extract, up front, from a
package the maximum amount of reuse. To
assume application specificity when in reality
wide domain applications can be obtained is
to defeat the gain to be realized from reus-
able software.

Let us first take a look at a classification
system to describe the commonality of
software parts.

Classification System for Commonality

Application software reuse can be mea-
sured across two domains:

(1) within an application area

(2) across application areas

By applications area we mean a distinct
industrial grouping. For example, different
applications areas could include missiles, air-
craft, spacecraft, weapons, ships, lasers,
command/control, radar, etc.

Software that fulfills a high degree of
reuse in any of the above domains is a good

D OOOX Y
R S B N M S R

OAGAON Ay 57
) ‘.’i !,’t":"i.:'..) ‘\._D‘.‘.I:.' ‘020"!(‘2@,!

candidate for reusable software. Since our

objective is to design software packages that

will yield the maximum amount of reuse, the
design process should explore the possibility
of expanding a package designed for a specific
applications are to a package that is reused
across many applications areas. Again, the
cost of not looking carefully into this possi-
bility and filling a reusable software library
with an excess of application specific software
packages could cancel some of the benefits
that would accrue to a reusable software sys-
tem.

We can then think of commonality matrix
that has two dimensions:

(1) degree of commonality across applica-
tion areas

(2) degree of commonality within an appli-
cations area

This matrix is shown in Figure 1. Each
square of the matrix suggests a relative vaiue
for software package commonality. The
higher the index, the greater the domain of
applicability that is predicted. The scale goes
from 0 to 6 with 0 yielding the least com-
monality and 6 yielding the most.

As an example, Figure 2 suggests a pos-
sible classification of software for a spacecraft
application specific area. This classification
then classifies the given software according to
the vertical direction of Figure 1. In Figure 3
the same software packages are classified
according to the horizontal direction of Fig-
ure 1. If we locate the intersection of each
package on Figure 1, we can determine the
commonality index. We now list each pack-
age and its commonality index:

SOTLS...coverrinernnneerceanenns 6
data structures........... 6
abstract processes....... 6
computer system........ 6
s/w maintenance........ 6
math functions........... 5
geometric functions....5
matrix functions......... 5
vector functions......... S
process functions........ 5
communications......... 5
guidance functions.....4
navigation

teiemetric functions...4

Wy

¥

s/w design................. 4
s/w development....... 4
s/w verification......... 4
mission functions....... 2
input routines............ 2
output routines.......... 2
system functions........ 0
warhead control......... 0
system inputs............. 0
system output............ 0

This matrix can be used then to orient
us in the design of reusable packages. Our
design objective is to improve the packages’
commonality index. Let us now take a look
at techniques that can help us meet our goal
of increasing a packages’ commonality index.

Reusable software will be designed
using Ada with its attributes of information
hiding, modularity, and generic packages. In
order to improve the commonality index of
an Ada software package, we want to strip
away those parts of the package that contrib-
ute to a narrow degree of applicability. Fig-
ure 4 shows a package divided into its appli-
cation specific parts and its application
independent parts. Here we are dividing the
package into three main divisions; (1) input,
(2) process, (3) output,

We can assume that the package of Fig-
ure 4 would not be a good candidate for reus-
able software across application boundaries
because of the application dependent parts.
If the application dependent parts are
removed, the remainder of the package could
possibly be engaged in heavy reuse.

Two ways exist 10 solve this problem.
The first way would be to create application
dependent packages consisting solely of the
application dependent parts of the original
package. This concept is shown in Figure 5.
This technique would create two library pack-
ages. One package would have a high degree
of commonality and reuse while the other
package would have a low degree of com-
monality and reuse.

A second technique would be creation
of generic packages that would be instantiated
with the application dependent parts as shown
in Figure 6. Here the only library package is

ad Wty ahon Uartle AT gl a T P FLE
addinhndintntianlstaditaintatelatintntedadninind At adnthhntntalintut ottt

by e b XX

L)

(N {
1. 850 00 008
A c,’a Lt

the generic packages. The generic packages
would have the most reuse across applica-
tions boundaries. The instantiator is not a
library package, but rather is a software
module created for an application specific
function. Its reuse would not be great and it
would not be placed into the reusable
software library.

Figure 6 shows the input, process, and
output within the same package. [t might be
preferable to keep the input, process, and
output in separate and distinct packages. For
this case, the instantiator procedure would
require sequencing in order to instantiate the
input, process, and output packages in the
proper order.

Example

As an example, consider the software
represented in Figure 7. This software
checks inputs for limits, ranges, and, in the
case of discrete inputs, desirable states. The
outputs from the software are various mes-
sages along with scaled inputs.

This module thus contains much in the
way of application specific software and
tables. [t contains limits, scale factors, mes-
sages, and the like. This package would not
be considered to be reusable. Why, every
application would require a reconfiguration.

In order to make this package reusable,
the non-generic parts can be removed. A
generic module that does the checking, scal-
ing and data output can be writrten. The
reusable module would contain just the pro-
cess. The data can be acquired from other
modaules that are application specific.

Figure 8 shows the generic module
used for checking, scaling, and the outputting
of messages and scaled data. Other applica-
tion specific modules handle conversion to
common data types and contain tables of
ranges, limits, scale factors, and messages
along with tables formed from the converted
inputs. In Figure 8, modules 1 and 2 would
not be reusable, but module 3 would.
Modules 1 and 2 could be contained within
the instantiator. Module 3 now can be used
over a wide range of applications where range
and limit checking are done.

10C

LIS L)0

e)

This example shows that with proper
design, reusable modules can be created from
non-reusable modules by separating the appls-
cation specific parts and creating generic reus-
able modules.

Summary

This paper has presented several con-
cepts relating to the design of software pack-
ages with the attribute of high reusability.
Specifically, we showed that the degree of
commonality of a module must be measured
both within a specific appiications area and
across many application areas. A matrix was
presented with which to evaluate the com-
monality of modules across both domains.

Two techniques were presented for
improving the commonality of software pack-
ages. The first technique suggests separating
application dependent parts from application
independent parts. The application indepen-
dent part becomes a reusabie package.

The second technique creates a generic
package that is instantiated with application
dependent parameters. The generic package
becomes the reusable software package while
the instantiator is developed for each applica-
tion and is not a reusable software package.

Acknowiedgements

The authors wish to thank Keith Morris
for his invaluable input in the preparation of
this paper.

McCain, "A Software Development Metho-
dology for Reusable Components”, STARS
Workshop 1985 Reports.

McNicholl & Anderson, "CAMP Preliminary
Technical Report", STARS Workshop 1985
Reports

Snodgrass, "Fundamental Technical Issues of
Reusing Mission Critical Application
Software", STARS Workshop 1985 Reports

Common Ada Missile Packages, Interim
Report AFATL-TR-85-17, September 1984 -
January 1985

AN i 0 3

AN D OB Q) . .. " ' 0 SOOOTKN
" :.:ng,ls:,:;:,‘sj.!uf,’» S A N S R S A KO R OO G SUDOSERA X SRR X ARG ORNC WOy

P

)

Forr
o 3 ~

Ly

-

S n

»
i

e

-

o IY TP
qg.] .
2 53 X

<%

» 3

e we
P4

ey

el
-“-.

x
s
LK

13
e

" y i
L R

&

‘n’ : l“.t.‘ll. l.'.l', " 0‘ _

LS
'I‘,"

Freeman, "Reusable Software Engineering:
Concepts and Research Directions", ITT
Workshop on Reusability in Probgrammin.
September 1983

Nise, Dillehunt, McKay, Kim, Griffin, "A
Reusable Software System"”,
AIAA/ACM/NASA/IEEE Computers in
Aerospace V Conference, 21-23 October
1985 ’

Grabow & Noble, "Reusable Software Con-
cepts and Software Development Methodolo-
gies”, AIAA/ACM/NASA/IEEE Computers
in Aerospace V Conference, 21-23 October
1985

McCain, "Reusable Software Component
Construction, A Product-Oriented Paradigm”,
AIAA/ACM/NASA/IEEE Computers in
Aerospace V Conference, 21-23 October
1985

-~

e A K)

101

Jones etal, "Issues in Software Reusability",
SigAda ’

Parnas, "On the Criteria to be Used in
Decomposing Systems into Modules”, Com-
munications of ACM, 1972

Parnas, "Designing Software for Ease of
Extension and Contraction", IEEE Transac-
tions on Software Engineering, March 1979

Horowitz & Munson, "An Expansive View of
Reusable Software", ITT Workshop on Reu-
sability in Programming, September 1983

Goodell, "Quantitative Study of Functional
Commonality in a Sample of Business Appli-
cations”, ITT Workshop on Reusability in
Programming, September 1983

1,

ocross
spplicetions

within

epplications¥®ry NOTOwW nerrow wide

very wide

very nerrow 0

nerrow 1

UIN|=—

wide 2

THN WL

very wide 3 4

ocjlnib|w

Figure | - Commonality Matrix

102

3

'Y

(IS AN RN AR T 0,3 0,0 1 4ty U ad
NERNA RN NS M AN NN MIOLRNR W R X RO OO KW N Mo

LN N)
AN AN

W 3 SN
LN ,“af“g. 0‘1"‘!?4".4&?’(J

SERY WIDE widt NARROW UERY NARROW

sorts siv esign wission Anctions system Anctions
data struohere s/w érvelopment rput revtines warheod sentrel
ahstract precesses s/v verificstion owipst reutines system bputs
eomputer system somputer languages Sy stem eutputs
fevigation Anotions
s/w matnienance
aath fimctions
grometrio Amotions
Mtrix Anotions
wester Amotions
’ process functisns
o oommiisations

guidance fimotions
Solomotric Amotions 7

..i:'. : Figure 2 - Classification of Commonality.

s Example Spacecraft Specific.

)

y

Ao

‘l‘:'ﬁ

!

9.' h

'.'n'-

] '.'

3

i

@

e

o

e

R

o

)

Q: .: !

L)

;'O.t 1 03

X s SIS 0® PV I, DSOS OGOBOSOOGLAAONOOBMOHBDODGER)
"»3"‘%“‘}',"-’.‘3"0’?5‘5:5"4‘f:‘?&.".ul't"?‘s." BAGHC ‘-‘v.'t."h'?h")a‘.l\‘?vi ‘9!.4!! Tad ‘!’h‘"‘.f !

QOOOQGLIOUOIAOY et ade
: 14487 - DO .L_‘_!A*.[‘*Ejﬁh“..s‘?".é‘i}pwkqt,ﬂ fag‘i‘-xi“,‘;. by

13

%ﬁ , UERY WIDE wibt NARROW BERY NRRROW

srtis

6L struchare
abstract processes
somputer system

math functions
grometric functions
matrix Anctions
weotor funotions

guidance functions
mission Amctions
telemetrio finotions

system functions
wartead control
system tputs
system outputs

K XY
A
‘ J‘f"‘:’f‘r

I
T

somputer languages

prooess functions
s/ w maintonance

osrymagvications
s/w dosign

s/w Gavelopment
s/w verifiostion Q

gyt reutines

-

.

o Figure 3 - Classification of Commonality.
':: Example Across Applications.

104

L e a T bea T Ty Baare 83 VLTRSS
) é'!'s‘e"hg',"&*%iée*g‘“"7"4' "x:"cii[s h“..ﬁ\i‘\b‘

i

Ty
,_‘1‘“-‘&,'.'7.‘

s
4

,-"-- application . epplication
a dependent epplication| | gependent
?

- input dependent (¥ output
*:3 trensformations process trensformations

e application application || Mgpplication

0 independent ndependen independent

: ‘ input rocess sutput

% {trensformations | treasformations

-..c
2

Figure 4 - Software Package Containing Application Parts

. cfﬁ“f‘gu?'

™

s

- @

SA
-

B

X X]
e L

,..2 ‘r‘-;d""
- o

N
e

>

.

-—....h-

O K%

105

, : 60 OO 00CET 0 OGOGOGBLINOK: ' I, N N S R O T
; 'fo.".’s‘:” .t'\‘?h.‘\hqh‘:& .",'n‘:t.‘fh‘fu :'.t‘:‘tl:' \.:‘ N bt I:'.".h"ﬁ‘!h'? "s‘v.l",‘_‘ﬂh"kt“i‘»“'"i:‘?‘ :“0.."“l,"ﬁt",‘ig"‘D’,"?‘J‘Qh‘.’"t",.te‘.lf"!’-“l..“4’:"!’.‘\!‘.a?ﬂ.eh'l,l;if‘.l‘y"l,"!t'

DATAN

S

5 Sk

:3:&’&“’ W
d Foll's

application : epplication
dependent epplication| | dependent

input dependant 3 sulput
transformations 7!"0!?!88 transformations

2222\

XS

L3

=

-l
"]

e g)

= ol v i e
.

s

-
-
-

' application

epplication
independent independent
input sutput

transformations

:

oy Figure 5 - Packages Separated Into Application Independent
and Application Dependent

oh%ﬁ‘
-."l .

- lom
KK -
-

106

IO b DOOGOND OOOO0NO00 AT . 0 A0 B
"!*?"“'-'!'.'-‘.“;"'z‘.,'?‘ 1.5 f"h"h'."»‘s‘?‘\...’n'!‘n"':‘.'l.!.g"lt‘!'t.?‘l‘:':.:'1"'L‘!" ?’l‘!h‘!'l‘!"‘,‘n'l.n'i‘o‘“’t"én’h‘l'“,0'3‘.-4.‘315’.'?!.,'ﬂ"d"x'!’l@! l'.. A'q.-‘t’:‘\"'i“' gﬂl)

a XN

4",'&".‘#!" ‘

S

instantiator

'l,‘

-,

s

sequencer spplication dependant
specifications

o e 5
oV % v &

e
[}

o

generic _ generic [generic
. input procsss sutput
transfermations transformations

o Figure 6 - Figure Application Dependent Parts Created from
3"" Instantiation of Generic Packages

&
>

i
ra

R]
N Fr Ly

o PR
i g

Qoss:
Y

&
.o~
x
.
¥
U

*
a,

- g e .
LI 2

107

s

-
- e
-

] - '
3 : OOQDCRAMNY) 4 OCY prens
N e L A Lt A R e e L R T R D R R LR R

»

finalog
® Discrete
Inputs

-/

Rcquire
Input

A\

Check for

Range O Limits

If Analog

Check for

Oesirable State

If Discrete

Table of
Ranges,
Limits,
Scaling,

o
Messages

Scale input

L\

Messages
o
Scoled Date
Out

Figure 7 - Non-Reusable Scaler-Checker

108

)
QU
al

4".‘.

Check
Range,
Limits
Perform
Validity

. Conversion
Q@ Analog 0] ¢o

@ Ronges
g | Date mits Check

Sceled
LN /| Tupes @ Scaling for
250 ' 1 Factors Desirabie 0;::

o ® validit States — 7
}{; v Scale
e

;: / # of
e A’ Parameters
3

; @ Messages Inputs
@ Tables g | Select

2 | Messages

,'5 Figure 8 - Separate Reusable (Block 3) and Non-Reusable
{)f (Blocks 1 and 2) Packages

e 109

A
< L)

y)
" OO

KON

e , 0 ? ¢ % LAY O ANTTOOIO0G0N)
et !l’-»"!‘f..ls-.""'“i‘.“e““?“'z"et‘ﬁ»‘i‘-."’«‘?‘:':'t'!‘a"'Jt?;"'s‘:”t-‘ ‘!'é‘q'b'~»"£?«"l‘.~"‘..s'lfq“ta‘?”"@") -1.!\‘«“' "«9%1’!‘5';%'-A‘fn‘.»‘&'v'.‘ O A ".J’h‘?n‘i‘r\,‘a‘.ﬁ‘c&‘o

Acgzo

s
e

g £ b
-

—‘hh’

4 THE DESIGN FOR REUSABLE SOFTWARE

' COMMONALITY
by

.-..."ﬁdaﬂ
w Ll @

Norman S. Nise
Chuck Giflin

-

Rockwell Internationat
Downey, Cailfornia

o
[P, AT R X

)

B g e

- e e P

W e e e

110

A". l a |'. ;', a’,ini, ¥ ORI SR q'- CJ. \d OO 5.;.%9.%..& SOBOBONMOAG n,ﬁ\;, A tad et 1“‘0, XN ‘_'« S H .\,\h‘ 0!

PO nle PN % KD DDA vyt

el o bl dhadh e dhendh et i i
& @t B PR RN AT TR TNy O P TR O O O r - ahaindd
o

b THE DESIGN FOR REUSABLE SOFTW ARE
= COMMONALITY

Q ssmms [NTRODUCTION

o COMMONALITY

CLASSIFICATION SYSTEM FOR COMMONALITY
PACKAGE DESIGN TO IMPROVE COMMONALITY
AN EXAMPLE

b

’.

¥ %-.o.

Cg

-

ot
24
o

P)
-

K% 5

L.

CX
ol e

-
5

Q-peig

o . : b ’ ot
RS

ll"‘l' 1 1 1

¥ | PP n h ¥ KT Q40
: ‘ D DGO D80 oA OB DN OSRGOSO SO SO SOAOADROSONX XD
q':‘."l‘.:'l\‘.a'*‘("l’n'o!:'é,‘l..':.?h !,'i‘.!s“:‘i‘:"i‘:'b RN !ﬁ‘:‘; X l‘:’l"'i !"-‘h;‘!h‘!ﬁ:‘tﬂJ!l.‘!h"l.,"h"!J'J-.‘?11‘!0.‘!9.‘fh‘!ﬁ‘!'-‘!‘»‘?&"h".lu‘?iu"‘*’;?i*‘ bttt

INTRODUCTION

PURPOSE OF .THE BRIEFING

® TO STATE THE IMPORTANCE OF DESIGNING ADA"
REUSABLE PACKAGES, APRIORI, WITH A DOMAIN

OF MAXIMUM APPLICABILITY
® TO MAKE SUGGESTIONS TO ACCOMPLISH THE TASK

® Ada is a registered trademark of the United States DoD, Ada Joiat
Program Office

112

BOCSONON)
. \\,I*’gﬂ,':a,_‘fi!“_gn

AROAO

OANGDOEODGLUDIOOLE. ‘ LAAACAOA0N00
"i,v"?-"—.‘?n‘:n.‘?‘h‘t*.-5.5:.‘,!;?!‘;&,‘3‘h’g‘s'»*:?a'tf;'ilo"t-,:o LI SRR I

ST

R (A NNONRADSDE J L N AR
&9?‘2‘."';‘3‘ AN A AT f‘l‘-“.i’e?&![PRI

- -
.
-

L/
> S5t

S
%/

SUPPLY
PRODUCTIVITY
PERSONNEL
COSY
HARDWARE

(4

Ly Y

% OF TOTAL REQUIRED

.é{-"

;
w5

: = i A . e 98
[k -
F ey

[

THE OVERALL PROBLEM

~ INTRODUCTION
SOFTWARE PROBLEMS

x 2
DEMAND
SOFTWARE
COST
SOFTWARE

"y 113

LR AES OO RUER S % 20 SR SO RN 2
Q'a'f‘ﬂ,'l‘,":‘*iﬁ* At 8T, a8 o b tr\ep’_;'.’,. l‘.\'._ﬂ"o ,

E "!:? S

‘ WIS ‘-“-“"“'1

0 INTRODUCTION

X THE IMPORTANCE OF SOFTWARE
g ~ COMMONALITY

R SOLUTION TO SOFTWARE
® ECONOMIC PROBLEMS

REUSABLE SOFTWARE

" COMMON PACKRGES

114

oy WL ‘] AN AN NI AP c.' E AU INICIA I EON LN TAN) G AN K A PN T
\’ztigi:‘?l:l’ ':‘gj“!i"‘ &t“:i“f}“?‘i‘TQ’.","g‘!'?‘!h'”"lt‘.’;‘,.t‘!”‘?‘e‘«‘-‘ré"a?‘\‘5.?1’;?{?.".1"p‘i'yeé“*."":i"t:"a?%?i’l'ﬁ‘ ‘Q‘QJQ}‘QQ“S@?":"‘Q(:ﬂ(,!‘ﬁ‘:.&heq'yeo’",Q"‘?(h‘&‘f@ ENE T R AT

i THE DESIGN FOR REUSABLE SOFTW ARE
- COMMONALITY

'INTRODUCTION
4 mmms COMMONALITY

o CLASSIFICATION SYSTEM FOR COMMONALITY
o PACKAGE DESIGN TO IMPROVE COMMONALITY
B AN EXAMPLE

b . 115

v 1 . IOSORORINIINE 3 e bty e bl S atedy BOAUGOOCOUCOOGOONUOLNN BOOONYN
W l?"&."a“"".lt"|?"lf"‘«“"""}‘3'2‘?‘.‘2'&‘.‘:'4‘2%‘3';,.:is.' a A S DA O OO N OO ORI

‘3¢
Al
g

TN TETrew WY LWy TR R NN IR NN AT IR i

= COMMONALITY

i THE COMMONALITY ISSUE
1. LIMITED DOMAIN OF APPLICABILITY

@ Package designed for no reuse within an applications area
® Package designed for reuse within an applications area

: .2‘%‘-1:

PR

0“-

INSTEAD OF

"" . G
o 2. DOMAIN OF APPLICABILITY IS NOT |
i | COMMUNICATED TO THE SOFTWARE

A DESIGNER

R0 116

¥

C b ¢ U N RTINS NN BN B DA A ADE
T T N T T A S I S I NI

cOMMONALITY

WHY THERE IS A COMMONALITY ISSUE

® Difficuity in establishing guidelines for reuse across applications

lapplications vs functions

® Lack of incentives for developers in a single applications area

117

gty Ui 00 A ATy AR asy gFy Ve af e
A‘.“:‘“:‘\:"J*é;wtl{'?‘ SOr Ml }l:bfﬁfai"'. LU

WoISAS oavM1jOS
9iqUSNoJ B Jo S11joueq.ofwou0Id Y1 JO UOIIBIEOIUBD OIqISSOd o

57502 92UvUaUIBW pus yUowdo|oAep oJow uvow sofexied 0JON ¢
UOJ18D}JISSPID PUR [BAO1I193 Ul AN

Aseaqn
9J8M1JOS 01qesSNol oY) UIY M sedexoed Juijwis Jo UOKIBIS)IOI o

osNoeJ oI Yiim sodexoe

118

d0SST ALI'TVNONKNOD dH.L 40 SNOILVIOITdINI

A11ITVNORNOD

- n . o o= o » - W - - -~ , - - -
Ll - . Pl s " d K SO @ BN AAA A . - e . =
R0 ORI AR iR o S AR SR O R O Rt - <
=" . el

L b L sk e 2 T T TR rT YT WOy TETWNT

o SISTER DIVISIONS
® UNIVERSITIES

e CONSORTIUMS

o JEEE
s NASA
e DOD

USERS/COMMUNICATORS
s Ada PROJECTS

LS
LA

! o
-

NASA AND MIL
STANDARDS

STANDARDS [P

REUSABLE
SOFTWARE

PACKAGE
LIBRARY
VALIDATION
PROGRAMMING

.COMMONALITY

SOLUTIONS

MANUAL
CAl

Ads
REFERENCE

WAREHOUSE &
REAL TIME

AVARABILITY

PRO-

COMMONALITY?

Ada PROJECTS

JECTY
DATA

NOIS30 Q34N3IWO LO3r80 | AN3Wd013A3Q

A REUSABLE SOFTWARE SYSTEM
"
_

IR&D
PROGRAM
SYNYAX

RN i T O 25

o he

CONTRACYTS REQUIREMENTS
DESIGN

ﬁ

Ade
EDUCATION
PROGRAM
- - DESIGN
METHODS
Adas
EDUCATION

n"l 1 19

OO & ; AP N 3.0, PORS I OATUR TR L EPIEREEA Al RFAMIY) ML WSO LGAING
0¥ty e 00 010 U K B 0 N A G e ey S a0 e S SR b T G L) 8

I ISERSOC OISO Lathethy 1 R XRX]

- e
:.-z.-'i;"é:

)
e’
-t
-

"
2
-

o o
EETITE,

-

; -
e

-
e

Ny
C" ..
"r'.l'g
\) "'.

NG
L':;

FLIGHT | ON -
ONTROL orplT |[FILTERS| SORTS

COMMONALITY
APPLICATIONS VS FUNCTIONS
@

GUID-

GATION] ANCE
&>

NAVI -

FUNCTIONS

SPACECRAFY
AIRCRAFT
SATELLITES

APPLICATIONRS
MISSILES

L} 5)
\..?‘k,‘_c.‘ka, I

T3t gt 6 5, OO DO IODOACAON] OAOONAC 30, T AT iy OGN
N ittt b OOt ERRIRY bt sttt Wy

% ey - 8 e S A Ay - - b b e AR aa - Al T T TR AR TR TR T T - T I Y TR TR U T

s THE DESIGN FOR REUSABLE SOFTW ARE
COMMON ALITY

'? INTRODUCTION
COMMONALITY

. mmmm CLASSIFICATION SYSTEM FOR COMMONALITY
& PACKAGE DESIGN TO IMPROVE COMMONALITY
5 AN EXAMPLE

R 4

:::. 121

e V0N AVAR A0 Y 0y Wy b g DOPATY AT NAN 0F h LA g g D N I O N A R U X W OSSO IO
NI e ‘.\I‘LQ"..("‘%. “:1’.' .ﬂ'}a6‘.%"};0?&"'1""4'. A“.'A".’u':’t’,_i-" DN *"ﬁ’f O .‘?!.‘?l‘."l. WAL :’.‘a"‘t’“s’l’a’l'uh' ‘i’.‘l‘-'\'.h'.!l't‘t‘.‘.':'e'.‘.\n'n'.io'.’.Lt.‘q‘:‘. DOUSXURS

VWO W W TN A W S P TR A TR B O AT T A N N E T T RNV WY U U AW AN WI‘JWWWWWWI'.WWW

CLASSIFICATION SYSTEM FOR COMMONALITY

COMMONALITY MATRIX

- ACROSS
A';:::’::Ano'g PPL!CAT!O!SLX::;' narzow! wipE :glgnys
VERY NARROW 0 1 2
NARROW 1 2 3 4 e
WIDE , 2 3 4 S
VERY WIDE 3 4 5 6

I o do

‘0?5?&!;’!‘._36’:&'

4

-~ P
fl?q:i‘r‘l’...l'\,‘!a ,l‘o .&‘

sgonJun} newWN

sgonounj s>uepind

. . SUONEINTNWWOD
. suonounj) sseroid
STUOTI2UN] J0)20A

sgonounj xpnew

sgonounj > newmoe’d.

suonounj qyew

9OURTNTIRE M/S

sgornyoun) gonedjaeu

(AN ()
XA NN

0
“?h‘..‘

"
L

AT 5 M ANTL N A
Cg!l!afl, AL IR TN

sindyno masfs sedenduew] 10yndwod . wasds seyndwod -
synduy maysds ssunnos yndyino GONWIJII®A M/ ses89501d yernsqe)
{onuos pregiem ssunnos yndoy Juemdojeasp m/s seinyouns sjep
sgoroun) weisds SUOT}OUN] WoIssiw alisep m/s s)ios
MONEVN LUIA MOBAVN AdIM aaIM AWAA 2

-

.
R &
s
2
-
X
=

0
XY

DIJIDAdS LAVIDIIDIVCS - A TdNVXH

Oy o
(h .0?»,‘!03

)
)

o
4%

'ALITVNONMOI %04 MALSLS MOLLVIIAISSVI)

AN

'

,ln ?'!‘!Qt.’h 51

i)
? fo!l?l.

&
RN

r .
?.!l!l!q "8

®

NI P - e v e N N A A] e Tl e e CX A L R ‘ R oA 06 o, A K P T ey
S O s A s R LA S O L PO AN T e s @ KRSV @ AT o RRZREEER

Pl o' = = W R e e " EREEaC et s

VERY NARROW
system fuactions
warhead coatrol
system inputs -
system outputs

navigation functions
guidance fuactions
telemetric functions
mission functions
input routines
output routines

NARROW

CLASS IFICATION SYSTEM FOR COMMONALITY

geometric functions
matrix functions
vector functions
process functions
communications
s/w development
s/w verification

math functions
s/w design

EXAMPLE - ACROSS APPLICATIONS

®

VERY WIDE

. soris
data structures
abstract processes
computer system
computer languages
s/w maintenance

B 124

o AR ! W . U "t O OO OIAG G ANTNSGBONGIONG ARG TAS
..0'if*.'."’&'.'f",‘:o',-‘:lf’:!,’n. ‘,,‘A":'un‘:,év’l \t,ﬁ.",‘?ﬁ ’;‘?0?‘“‘&‘ .!:‘.i‘w.(‘) .!.i!|‘a,!':!i':.“..l'!.l".'l.,_‘I':.O’:‘\‘.‘5‘3‘&‘!‘«‘3‘!'!‘!'!’ﬁ!'a“‘l"hd‘c‘,“‘.»i"-i'ei‘!'.'?"""s&.ﬂ‘_’v"' 2

LIS T

roas Py wd

e

vl

»
]

CLASSIFICATION SYSTEM FOR COMMONALITY

sorts

data structures
abstract processes
computer system
s/w maintenance
math functions
geometric functions
matrix functions
vector functions
process functions
communications
s/w design

s/w development
s/w verification
computer languages

D |‘l

(KRS
AR RN)

)

LI W W WV IV IV NV RV IRV - - 3 - X

k. oyt 0

OSSR ¥ DOSOBOBOSONOHNE
'Qi‘.'lz“ve‘,',i‘.“e"‘ b, nﬂh‘.uf‘,’t»‘.‘n‘*’.z, “,t.‘,t“”h"c .‘ft"ﬁh'?h“n‘ A

EXAMPLE - COMMONALITY RATING

navigation functions

guidance functions
telemetric functions
mission functions
input routines
output routines
system functions
warhead coatrol
system inputs
system outputs

OO

; THE DESIGN FOR REUSABLE SOFTW ARE
i COMMONALITY

&.-{

o - INTRODUCTION

: COMMONALITY

R CLASSIFICATION SYSTEM FOR COMMONALITY
e s PACKAGE DESIGN TO IMPROVE COMMONALITY |
o - AN EXAMPLE

-
%'F.

N 126

IR 7
sf“.ei

B4

IR Gy ; ; . K ’ AN , BN RN R
N 4% ¥ U . OO A T T A I O S DA B D D S DD 0N
DR RSN R e R R R N R R R A e R RO NI

X
2ttty K

|u—‘_‘.

PACKAGE DESIGN TO IMPROVE COMMONALITY

SOFTWARE PACKAGE CONTAINING
APPLICATION DEPENDENT PARTS

e LEEAA e
o *7a o5sT fﬂ_'

_

application | epplicetion
o e N g

transformations process tronsformations

application application

independent L independen
input ' rgcess

transformeations

spplication
independent
output
transformations |

oo
L=

LD

P
-

_,
T P,
-

XTI ®

|
3

x 127

+7 3 SR Q GAONOOOHGN RO GOSN OOOB0NI AT T i
SRS COS 00O N S O S S N A S A A I BB S S NN RS A SR AT AL Y

Sy OrT T TR Ty
it Tyt 3)
v;A"g_“';J‘n,l’pﬂ_l.lgﬁ.i‘h"l .

PACKAGE DESIGN TO IMPROVE COMMONALITY

PACKAGES SEPARATED INTO

APPLICATION INDEPENDENT

AND
APPLICATION DEPENDENT PARTS

applicetion | application
dependent application| | gependent

input dependent 3 oytput
trensformations process trensformaetions

=

ppiication

application opplication
independent ind:gensdsen independent
nput proce output

Insfg troansformations

128

IS SR ¥ U ! DRG0 DBOOE IRSOGDAINDSD
ﬁ'J;?.ft‘.ft',fo’.ﬂ'.fa“,?t’_:'_-‘;f.ﬂ“‘@‘,-a",ft'.,’,4’.,‘,a*.!a'_,!o%‘;c?@:n’_.ft’g_n‘q*u‘,‘t?;’,ﬂ,,w';,e‘g,n‘j‘w RISURANRAN

DSOS ? iy
hiu,l'v'r’“t“'tnf‘}-clé‘«“

PACKAGE DESIGN TO IMPROVE COMMONALITY

APPLICATION DEPENDENT PARTS
CREATED FROM INSTANTIATION OF

GENERIC PACKAGES

instantietor

sequencer

applicstion dependent
specifications

generic
input

transformetions

generic generic
" process output

transformations

§ () O
“»’a'!*:’zaﬂt’z".'t’*‘-"!"‘.

!

129

s ind i

oG IYOaAHOAOHO OO
bttt ettt e

A

s BNENENERSENENBAF AN LNETANI RN ARSI RIVA \ DL A e s e

i THE DESIGN FOR REUSABLE SOFTW ARE
COMMONALITY

o INTRODUCTION

b COMMONALITY

;:.A CLASSIFICATION SYSTEM FOR COMMONALITY
i PACKAGE DESIGN TO IMPROVE COMMONALITY
i s AN EXAMPLE

130

DA AU IO NSRS ML M A AT Ty e eV e Vet e T T Do e Vg Raa Pt g Ty S v n e
J".‘C.Q'l..‘afa'l’o'!‘o"t.‘!le' - ,e"f:,'.i‘.Q"?.n’!‘.g'lt:’l?c"ta..t\.lgg'l' 'd' DCRANN, “l?."‘e'l‘n"“:oﬁ.vv"‘gi’ AR

SOESONONDN

0 AN EXAMPLE

y .
l|' 3

i NON-REUSABLE SCALER - CHECKER

® Acquire
W input

i _
il

Fa‘. ;

R Check for :
s ’ Anelog | Renge 0 Limits Table of

o 0 Discrete If Analog Limits, o

: - nputs
XX L Scoling, Scaled Deto

KX ‘ Check tor

" 4, o n"'
i ; Desirable Stote

o If Discrete Messoges

Renges, Messages

A

Scale Input

K, 131
)

:‘\
oy OHOA0 A OG0
Al

OB Py 4 A0 A OOLGRO0 O SOOI U R B R A RS GEOBOADE
T It T o O R R I A R i AN

bt AN EXAMPLE

W SEPARATE REUSABLE (BLOCK 3)
s AND NON-REUSABLE (BLOCKS 1 & 2)
o PACKAGES FOR SCALER-CHECKER

o
:,:.l ; Check
Renge,

:‘ : L # of Limits
W Porameters| [Perform X

Conversion
Validity

Anelog 0 ¢
Check Messages

K ' Discrete
gt tnputs | pate q. Limits Check o

Scaled
7| Types |®@ Scaling {for Dete @

Factors Desirable
. Stetes ut

@ Validity Scale
" @ Messages inputs
2 @ Tables Select
T | : | Messogeﬂ
3 2 3

-
]
o :

s s
o

-D..

o
[]

Ve

",
K
e 132

iy - ' o T I IO AT
ahaft Bryw o 40y A0 VIR GVY AV 4% 0% e BTy T AT A AR e T Y T T P % T TR Y TR R B Rl SR N
';“-'t"t"s‘!‘i"-'«’.'i'.‘z’?'A"’.‘A’:’uﬂ.’a‘:\"‘ﬁi’;“ N O O T B Tt O e e e e D e D D SR DA

-

A

. U
ity

e

x:.'..

t,::::
g f N

‘:':‘l @ .

MSAT Brief

:l:': Narrative to Accompany the High Level Technical Brief

oy

)

e

Wt C. Ogden

o

‘_Pl; Slide 1: The Software Environment each of these languages and wouid also be

i . .

& Software System Size/Complexity - many of very labor. intensive. The number of

3 he cuent Ay s conai obae 2562255 i which ve vere bomonded

'::.'n with hundreds of functions are hundreds of with a relative gmall effort, could anal zé
ey thousands of lines of source code. To manu- ftware written i w N y
-;":5 ally analyze this volume of software would be SO!!Ware Wwritien in a new language.
,'“' extremely labor intensive. - . Slide 4: MSAT History
KNS Software Costs - Software often takes the lion -

;'-,,:_\‘ share of the system cost because software This slide shows the tools which led up

f:n:: development is so labor intensive. Software to the MSAT effort. It started with the Pro-

\‘:"ﬂ maintenance can account for as much as 75% gram Flow Analyzer (PFA) back in the late

e of the Life cycle cost. 70’s and early 80’s. During 83 and 84, we

° Proliferation of languages/dialects - It is developed specific tools for specific syﬁstems;
&S:' estimated that there are 450 software Dut since dthey were wrll'tten ‘;" SpeclilC Sys-

;.o‘ A languages in’ existence; even though Ada is tems and contained mle: ocumentations

g::: suppose to be the cure-all and be the th_ey are not reusable. During 84 and §S. we

:::n‘. language for embedded systems applications, develo;z;% : PF)ORTRAbT nge An?\lysns E;rlo-

R our experience has shown that a sizable per- éram Anaivsic Pa table (1{'(‘:';‘;,) ssgm eé
. (. centage -of the 450 languages are currently C°3° A “al y§lsp rogram and a
",'15.' T . used by DoD in the systems we test. ode Analysis Frogram.

:::::‘ Compliance with design methodologies/ These are better documented and somewhat

o development standards - We are all con- more general purpose in nature. However,

:\‘ cerned that the software being developed for (hey were just stop-gap measures in prepara-

& < our applications complies with good design jon of the general purpose tool - MSAT - i
:) methodologies (such as top down design and hich we are finishing the acceptance testing 1
W structured programming) and good develop- in April 86. The languages shown are i
f{} ment standards (such as D°?‘STD‘2167)- " languages which we have analyzed with onc

_;.‘*J‘- we check and verify compliance? of the tools. The systems shown are sysiems ‘
J.""S ' . which have had some of their software i
4':;? Slide 2: Systems Requiring Assessment analyzed with one of the toois (not all results i

L from these analyses have been included in

D Back in April 1984, we took a look at formal test reports or the respective systems.

. j the systems on which we were performing

hey §oftware. tesgmg or planning for software test- Slide 5: Development Philosophy

b ing. This slide shows whose systems and the

4o languages the software was written in. In developing MSAT our development

B philosophy included the following items: We

Slide 3: Language Processors Required wanted MSAT to be language table driven.

. We chose to use a Commercial Data Base

v This slide shows the languages of the Management System (DBMS) (INGRES) in

previous slide ordered by High Order order to minimize development costs and to
Language (HOL) and Assembler (ASM). To take advantage of the many useful features of
prepare automated tools to analyze software a commercial DBMS. We wanted MSAT to
written in each of these languages would be be user friendly, e.g., menu driven with lots
_ very expensive. To manually analyze the of help. We knew that MSAT was not ini-
".:n ,."@'\ software requires individuals familiar with tially going to be the ultimate tool, so we

“ N At
Y
RSN MY

ol 133

W n . . . Y s M K ,]
Wt OANIGAG W o RS RERY b Ry QL0 ORI
N R YR A M AR R B XTI R R A H R R A O KM KA

"

o
B
AN
,'c:: designed it for expansion and enhancement. metrics from the data base and provides the
::ﬂ We decided that we should practice what we - various analyses and stores the results back
kX preach so we fully documented MSAT (we into the data base. The report generator @
Y followed DoD-STD-2167, draft standard at takes the info from the data base to create
‘Y the time we started) and we even plan on the desired reports.

. running MSAT on itself to prove its quality
:':. and maintainability. We are validating the Slide 8: MSAT Data/Control Flow
e ~ tool and the test plans, procedures and
i::; results are being reviewed by other Army This slide provides a more detailed look
o organizations. We plan on mvintaining of the data and control flow. It should be
o configuration control of MSAT for many noted that the source code is entered into the
K | years. automatic language processor along with the
’&',‘, source Language description. For the static
:"! Slide 6: Static Analysis Functions analysis the user can enter his own software
Wy s Zt:rx:ic;ards to compare against the default stan-
A This slide shows the 15 static analysis in the data base which are based upon
{ functions as delineated in the National DoD-STD-2167, 1679.
. Bureau of Standards (NBS) document: a tax- :

X onomy of tool features for the Ada program- gjige 9: MSAT Operational Capability
o ming support environment. The initial
S implementation of MSAT contains features This slide shows the MSAT initial capa-
ﬁ:,’- in the following areas: Auditing, Complexity, bility. The first language capability is VAX
" Statistical Analysis, Interface Analysis, Com- FORTRAN and 8085 Assembler. VAX
=g Parison, Error checking and Structure Check- FORTRAN was chosen because MSAT is
’ : ng. written in VAX FORTRAN and we wanted
¥ Auditing - comparing collected metrics to to check the quality of the MSAT code itseif.
s standards, e.g. from DoD-STD-1679 # Exe- (MSAT also has the embedded query
O cutable Statements = 200. Language EQUEL for INGRES). MSAT is
'?' C T McC Cyel . C l able to handle 3 languages for each system

Complexity - McCabes Cyclomatic Complex- 3n4) for any unit or subroutine. In a partic- ‘ :

) ity and Meyer's Extension ular unit MSAT can analyze the code for a
1 Statistical Analysis - Various simple statistics situation where there is embedded assembly
; \ on the code metrics language over the Static Analysis (SA) func-
o Interface Analysis - Does the cail statement got':.xi OT}:; repo:tsl.:re described in greater

- with parameters match the called routine with etail on the next slide.

) its parameters

N Comparison - Compares two version for Sude 10: MSAT Reports
:".i- structure changes, metnf: changes, etc. This slide shows the generai break-
.\-" Error Checking - various errors such as down of the MSAT reports.

' unresolved external references .
W Source Listing/Table of Contents - We some-

Structure C.hecki'ng - Recursion, Lower level times get boxes of code listings where a table
W module calling higher module of contents would come in very handy.
™ The Remainder of the functions should be Software quality metric reports - This shows

_ added in the future. the various levels of the quality metric
oy reports.

» .

N Slide 7: MSAT Schematic Structure Chart - This shows the subroutine
This schematic shows that MSAT runs hierarchical cail structure

on VAX with VMS. A tape of the source

I code (in ASCII) is entered onto disk. This

source code 1s entered into the automatic

Language processor which extracts the basic Interface Analysis Report - Potential prob-

metrics and stores away the info into the data lems in how the calling and called routines

base. The Static analysis function take the match up.

Error Report - Shows various errors detected
i.e., Unresolved external references.

Ut 134

!i -ﬂ'.'ﬂ!'g.-‘a"‘.l.- ,'”

20 GO0 ' O B DO SO0 M MM X TN N ¥ P MO0 DO
MR .o'.'.s',':ﬁ.'n!\\.ef'ﬂ. A‘.‘-':Q.,m‘-'.. X o u".';’,.n’.‘ﬂ'.hﬁ l'.',": e L i R T O I gt

- IVERT RIS I T e LT e we

Standards Compliance - Shows the various
levels of this reports exception (those units
not complying), unit summary, and system
summary.

Change analysis report - the differences
between two versions of the same system;
shows differences in the metrics on a unit by
unit basis as well as differences in system
structure. This is useful to handle the tape-
of-the-month syndrome where we test a sys-
tem, we find problems, the contractor goes
back to his place and comes back with a new
version of the software to be installed. What
did he change? This will help point where
and what kind of changes have been made.

Slide 11: Samplie report

This is a sample of MSAT Standards
Compliance Unit Summary Report. [t shows
for example that the standard of executable
Statements less than or equal to 200 is met
by all 203 units. The next standard, Max-
imum consecutive lines of code without com-
ments less than or equal to 10 is met by 152
or 94.6% of the units and not met by !1
units. The value 10 in the standard can be
changed to 5 by the user if so desired.

Slide 12: Software Life Cycle Costs

Assume that a software system during
the initial project development cost $3M (as
depicted by the solid line). Over the total
life cycle of the system (10¢years) the total
software costs could total $10M, with $7M
being spent for maintenance where mainte-
nance is defined as fixing bugs and enhancing
the system. Studies have shown that up to
75% of the software life-cycle costs can be

PRIV IFTFMIATTTLINLEITE LW W e

the code, i.e., how good is the quality of the
code. Third, it provides visibility into the
code to assist or analysis in understanding
and analyzing the code. Finally, MSAT pro-
vides a comparison between various version
to show what has actually been changed and
where.

Slide 14: Anticipated MSAT Users

Software Developers - we would like to
give MSAT to software developer to be used
during development - no reason to check the
code after the development is complete, find
problems and the developer says, OK there
are problems, now pay me to fix them.
Much better to give it to developer to be
used during development so problems can be
changed up front.

Verification and validation teams or contrac-
tors - obvious usage

Development testers - that us (EPG) can be
used during DT.

Users - the Irtel School was interested in
MSAT to help them analyze a program they
had gotten from Great Britain to understand
the source and aigorithms.

Software Support Centers - the LCSSC could
use MSAT for maintenance quality
assurance.

Software Libraries - STARS is interested in
MSAT to be used to analyze the reusable
Ada components which will be placed in the
reusabie components library.

Slide 15: Future Development Propoesed to
STARS

X :::' d T.n r‘rilaigtenance.t Cont\lrerselyé nfnge The first thing is to develop the initial
e ed line depicts a system "_” ere w docu): capability to analyze Ada code. Second, we
: ::ev:tai?::ta:;o;:inngwtgz{s zﬁch':;'tJ;AT by Peed to make MSAT transportable so it can
) ' be more usable. To do this we propose
) the total life cycle costs should be decreased. rewriting MSAT .n Ada (everybody should
A eventually have an Ada compiler), eliminat-
", Slide 13: The Multi-Lingual Static Analysis ing the VAX/VMS dependencies (system
: Toe! (PMMSAT) calls, etc.) and providing a stand-alone,
L . . government owned DBMS so that none has
Wy This is an overview slide to refresh our to buy the commercial DBMS.
o memories as to what MSAT does. First,
W MSAT provides static analysis of the software Third, we need to enhance the Ada
) in the areas we have already talked about. capability to handle the Ada special charac-
¢ Second, MSAT provides a quality analysis of teristics such as concurrent processing,
q
P :\:':
o i
)
¥ 135
o
W
e
".
»
Y

g 1 KO : ly . g O OSOGOS O ON OO NG
B s R D e e R R A e S e e e A S

exception handling. Fourth, develop a library
language capabilities: pick the 20 most used
languages in DoD and make MSAT work on
them.

Fifth, expand the current static analysis
capability in all 15 areas shown before.
Finally, provide the capability to store and
report on manually collected data such as
software trouble reports associated with the
software system.

136

Slide 16: FY86 MSAS Goals

If MSAS is funded by STARS by April
1, the initial Ada capability would be
developed, we would pick another language
such as Pascal and provide the capability to
analyze software written in that language.
And finally, we would begin converting
MSAS to Ada to make it transportable.

R R R T T R R T R B e R ST S SRR R

.‘ ¥
g
0
b,

oy
A
D)

-
)

LR

- o a

00 AR g "
PR r R RO X XL XSO MR A

MULTILINGUAL STATIC ANALYSIS SYSTEM (MSAS)

INTRODUCTION

~ HISTORY.

~ DEVELOPMENT PHILOSOPHY
- DESIGN FEATURES
REPORTS

- BENEFITS

ANTICIPATED USES

PROPOSED DEVELOPMENT

137

DA T DO DADSONOBON0NE WG IOGLONO0E
P :t,’.o'ts".-t'd"::ifv:l?-ft9@,‘?0,'?0.‘fn‘fn’!t:»'_‘f..'fr;.‘?i!‘,'iJ?t.‘.'l.’.";"h".h". EOONOHGINY

DAIBOGO00 3
}'?‘t'?’l‘!'#‘!‘.\."h .

THE SOFTWARE ENVIRONMENT

SOFTWARE SYSTEM SIZE/COMPLEXITY

]
o SOFTWARE COSTS
O o PROLIFERATION OF LANGUAGES/DIALECTS
i o COMPLIANCE WITH DESIGN MEHODOLOGIES/DEVELOPMENT STANDARDS
b o TOP DOWN DESIGN | |
= ¢ STRUCTURED PROGRAMMING | @
i3 o SOFTWARE DEVELOPMENT STANDARD DOD-STD-2167

l“ 138

‘Q
hd

' R IR ThN SR BNDA OSSN AN OISR EN
"-‘c"(!" e AR ‘:*q"' A2 ':‘l'*‘.’!‘:‘l’:”l':a,l’:'l’igzﬁz‘l"n'“.1,*31’«!"e’%’a,!‘afliﬁi’ RTONOSIAN 0?‘%’“’«&5’!"5&“‘.&taul"A'A‘:.,,ﬂ'e.".f-.l‘x A NI B R

»

" SYSTEMS REQUIRING ASSESSMENT (April 1984)

‘0.4 SYSTEM
! UNDER TEST LANGUAGE

e Teampack ROLM 1602 ASM

w RPYV FORTRAN IV (DEC)
i | PL/M-80
° SKC FORTRAN
o 8085 ASM
ag ¥ACRO-11 ASM
SKC 3121 ASM

bt - JTIDS SKC FORTRAN

SKC 3132 ASM
@ e AMZ 8002 ASM

(]
:ﬁ REGENCY NET MICROTEK PASCAL
'3 : - OMSI PASCAL
" 8085 ASM
AMD 2901 ASM
RCA 1802 ASM

) TRAILBLAZER ¢

- ROLM FORTRAN
o - 68000 ASM
®

:,'|: 139

{ IR0 ROOBOOGEARAANSHADE
2" ‘;‘3’;" OO t‘s‘:’n‘:‘ R0 ‘,." ..:‘k"‘: “’ta‘u*«‘h‘“,’i’-»“ ol

A Y 2nbet by

ST
W,

-
g
A

-

Aie;
=L dr
L]

-
o

s
2

e na il oW oW W T TR TR Y T I VI VR T R R G W TR TR Y ey

LANGUAGE PROCESSORS REQUIRED
HoL ASM
C ROLM 1602
FORTRAN [V (DEC) 68000
MICROTEK PASCAL 8085
OMSI PASCAL AMD 2901
PL/M-80 AMZ 8002
ROLM FORTRAN MACRO-11
SKC FORTRAN RCA 1802

SKC 3121/3132

140

|
e
|
!
i
j

M) MSAT_HISTORY

;1".:6 T00LS

0 1979 PFA
1983-4 SPECIFIC TOOLS

& 1984-5 FCAP, ACAP, CCAP
i 1985-6 MSAT
e LANGUAGES
R HOL Al
e FORTRAN - VARIOUS VERSIONS 8600
¢ JOVIAL 8600

c - | MACRO-11
b RATFOR : ROLM ASM
et SKC ASM

s SYSTEMS

N POSITION LOCATING REPORTING SYSTEM (PLRS) TEAMPACK

TACTICAL COMPUTER SYSTEM (TCS) TRAILBLAZER

i - INTEGRATED INERTIAL NAVIGATION SYSTEM (IINS) REMOTELY PILOTED VERICLE (RPV)
'l SGT YORK FIRE CONTROL

i JOINT TACTICAL INFORMATION DISTRIBUTION SYSTEM (JTIDS)

e 141

OGBSI iy Y S NN N N IR GAGATAN LTI At
» (] »,“h’ (RO Xy "'t.:?f?‘.a5!‘.,!?’-‘:".3:"'\";‘3‘:!‘.‘.*3’. (AK] _o,:‘m A :-';f:q“t&’!:»'d‘ 4820 MQN‘&‘,)»,?,O,’:"-,:J‘ !

€
SR VR YAy DL AN o N AT MO RO

iﬁﬁ . VELOPMENT PH 0PHY

o . LANGUAGE TABLE DRIVEN
. COMMERCIAL DBMS

o . USER FRIENDLY

i . DESIGNED FOR EXPANSION/ENHANCEMENT &
R . COMPLETELY DOCUMENTED/MAINTATHABLE

il ' . VALIDATION OF TOOL AND CONFIGURATION MANAGEMENT

s 142

DA SASANAOR ADANERESROSOC O DAOS OO OGISANDGOGLANONOGORONN Y DODCENO 3 Vot g "Ry Ak O NRRD GOCOBRIGONMNS
:‘?'!""'»!‘ N c.“:*_‘?' + ‘?‘“Y‘\‘?—‘"'b“-‘..',«'?f_.ﬂ.'-.'!‘A‘,’."':“?"~‘<"‘“:’»‘ﬂ"a"fhll'u!.:'s‘,*o'z"s‘,“:‘.Vr“z'a'ﬁh’?'I‘ 3“"!5‘\‘:‘1;‘3*’:'2‘-"‘?'4‘.“5‘(‘-"a'ﬁ»‘?&»”u" v et o e Tyttt

" STATIC ANALYSIS FUNCTIONS

& . AUDITING

. COMPLEXITY MEASUREMENT
. STATISTICAL ANALYSIS

. INTERFACE ANALYSIS

L
n INITIAL ?
3
4
5. COMPARISON
h
7
8

{ IMPLEMENTATION

=

Lol

Py

. CONSISTENCY CHECKING
. ERROR CHECKING
. STRUCTURE CHECKING
_ COMPLE TENESS
R LO. DATA FLOW ANALYSIS
LL. 1/0 SPECIFICATION
CROSS-REFERENCE
L3. SCANNING
TYPE ANALYSIS
~ UNIT ANALYSIS

iancss
L 4
*
N o]

-.
]

ool

s
-
N

X
.
o

x5
-
N

' * PRODUCED AS A RYPRODUCT OF OTHER FUNCTIONS
)
W ** REQUIRED TO RETAIN CURRENT TOOL CAPABILITY
)
¥

::f 143

SALDAOAGHAOUOLACAOINS
s.*.‘\‘"bd','s'g'y.i P TR o

REPORTS

O

DATA BASE

STATIC
LANGUAGE
ANALYSIS GENERATOR

AUTOMATIC
PROCESSOR

MSAT SCHEMATIC
MSAT

=
]
|
l
I
I
|
l

(TAPE)

L
SYSTEM UNDER TEST
CODE

SOURCE

h

144

X o U TR MR EATENEAC) AN PO ORI E , . . »
W JRAK PO *»!q‘.l"‘=,l'i"‘&.}‘v‘,'i‘}*’;fﬁé?":‘-ﬁ;},’z‘. T f"i'-’f“’t"h‘"l‘“ “i;“.ﬂ,)")d R ALYy A0S MDA
K BN | NROOEWATE XS [N MY g_.ﬁgf_l;(i A‘.\‘*,JI‘.‘Q’-, ’lﬁ'k."iﬁ"

AAWRIATAASRABRSHNON
1«“'*‘\4 ‘*94"‘&2;'&‘13&,;’z‘;’-’@f«""k,‘ r‘j’\f.'v -?.‘,v

USER INPUT PARAMETERS

MSAT
EXECUTIVE
CONTROLLER

u\iu

|

USER
INPUT
PARAMETERS

USER INPUT PARAMETERS

USER [NPUT PARAMETERS

EXTERNAL REFERENCES

[+ 4
o
-
x <
O
58 |
o w
9
w
o
«
>
Ll =]
ol A
—
- xle
-))
X € > g1 2
=D b (F e————————— -
SL = b=
IS = e
= W =
<
7]
9 2 g 2
-~ < D =
_ > Me— 3 P ———
= I E = =
&z 3 . =
< O
—— . =
@
—
ad
w
S = =
< A
=] w| wn
= Ol w
< o el =
-z > =
w 3 a
W
x o Q =
< D W
2 < - =
[T™ <
w —1
Q a ol x
[V I 2| <
= =
O Wa < =
- 00O <3
- < P
< Dw
5 248
<3
=2 -
< Q.
=
(=]
—
e
oa
g €3
(-4 oW
=] DA
Q Y]
v (=]

g
= 4
—
(7
(=1
(%]
-
)
Q
[~ 4
L
—

MSAT Data/Control Flow

04
LA

X
Standards Compliance
Source Listing/Table of Contents
Ctange Analysis
Interface Analysis
Software Quality Metrics
Structure Chart
(Error Reports)

Reports

MSAT OPERATIONAL CAPABILITY

Complexity Measurement
Statistical Analysis
Structure Checking
(Error Checking)

SA Functions
Comparison
Interface Analysis

Auditing

Other SA Functions/Metrics, Library
of Target System Software Languages

Lanquages

VAX FORTRAN
8085 ASM

(INGRES EQUEL)

P31 For
() - Minimal capability for [0C

X 146

XN AN f L K] OO LR 1.9 RANS i € SO A
I }a_‘u‘:“v“. 'C”-‘a‘i‘ »t&tz’*. .k"a“ﬁ“ : Y 9’1:31.?*'9'.".(,'?' W 5’%:‘ %.‘?K‘,'&. !’)élzﬁtffvsﬁﬂ_ﬂtﬁib‘;"fé‘c‘t’ o ag»'&‘y)'.‘.‘),*x",g

r A W L W S U T W T s ey
b

B MSAT REPORTS

% . SQURCE LISTING/TABLE OF CONTENTS (T0C)

:s . SOFTVARE QUALITY METRIC REPORTS
r . DETAIL FOR UNIT

UNIT SUMMARY

SYSTEM SUMMARY

. STRUCTURE CHART
¢ . ERROR REPORT
N . INTERFACE AUALYSIS REPORT

1 ' . STANDARDS COMPLIANCE REPORT
b . STANDARDS EXCEPTION

o . UNIT SUMMARY COMPLIANCE
n . SYSTEN COMPLIANCE

CHANGE ANALYSIS REPORT

A s

LA @ L5

-
T

PR

R N

147

)
[}
»

-)

DR AL TP TR P BT ¢ N % DADCBRNGDEONE A
N N A S R o A R S R U e SRR

K] 3 . NG [[] E CE MM AN 8,
\.i.\"l.t.l"t a‘.l‘v?\’n‘l’z?%”;!l‘-’"l’s'4"‘\1*!‘(':‘5'»-‘

e

M
UNCLASSIFIED OQutput Page : 48
Standards Comp'!iance UNIT SUMMARY Regort: MSAT PQT
TSS 1D/Versior. : MSPQT / 1.0 MSAT version : 1.0
Cluster Leavel : SYSTEM CSCI Collection Date
(21094 : n/a
IR EE SRR I I I I R R I RS S IS SIS S S R S S RIS S EEEE IR I RS EER SIS IS SRR LIS ST EITITISZI IS
| Stangara Document: EPG-STD [(*] = based on STD document |
| tLanguage ID : VAXII1FOR™
N 2SS IS IS E IS SN EE IS S I TR P e T S T ST E S ST S S S S S TSI IS TSRS EITITIIZTTIRNAIIZBIBTITIXITIISIR
] | # (%) of | # (%) of |
| Criterion Description: | UNITs | UNITs
| COMPLIANT | NON~COMPLIANT |
S S S EEEEEE IS EE R SRS E RS E I I IS SRR S IRE SIS A I IS EEEEAIRIETIINITTISZTIREAISIIIIIITISINZIZIZD
[®] Executable Statements <= 200 203 (100.0%) 0 (0.0%)
[*] M™ax Consequetive Executanis LOC w/cut Comment 192 (94.6%) 11 (S.4a%)
s <=
[®*] # Entry Points <z 1 . 203 (100.0%) 0 (0.0%)
{*] # comments (wnole + partial!) > € 198 (98.0%) 4 { 2.0%)
{®*] Maximum Internal Nesting Level <z § 198 (97.5%) S (2.5%)
[*}] % Exec.table commentag >= 80 125 (61.6%) 78 (38.4%)
(] # Compoung Esxecutable .0C = 0 203 (100.0%) 0 (0.0%)
[®] @& Backwarca Branches = 0 203 (100.0%) 0 (0.0%)
. {*] # Assemoly LOC = O 203 (100.0%) 0 (0.0%) -
)
{\% {*] @# Prglog lines > 0 (for units with # Exec s 199 (98.0%) 4 (2.0%)
e) tmts > 25))
hey {*] # Prolog linas > 10 . 196 (96.6%) 7 (3.a%)
K] {*)] # Lines of Conditional coce = 0 199 (98.0%) a (2.0%)
K 1
:*)'. [s] McCabe's Cycloma*ic <= 10 182 (89.7%) 21 (10.3%)
B\ ¢ [*] Myer's Complexity <= 10 187 (92.1%) 16 (7.9%)
z : ZSEE I I EE R E IS E I EE SRS S E I I SR E R T IS I E TR S NI E RS S RN A R S I I R S R R RN SRS SE R SRS SSRE STz
; X Tota! UNITs in CLUSTER = 203
‘ L]
Ty
IS
¢
?. J 2B T T3 IR I E I TS ST E SIS s CSrERECErREIZICESS S ETSSCCSS oS SESETS=Ss====
z" S-FEB-86 14:26:49 Report Page: 1
g
J UNCLASSIFLED
_’f Classification verifiea by THOMPSON
e
®
s
i
WY
Vi
[
ey
*.
A%
®
o ,‘
o "9
b2 o
g 148
A 1y
4’|'
)
@
¥
&
)
W

Y , . AP o « - , . N
LX) WY W 4, 5 Y T » P, 0o
B A N A RO B A AL AR MG A AT A TR RS RN R KON S RN TR AN KNI T XN X

.<.‘ ".b‘:-‘.’-
B

X

]
t
]
“ v \
]
{
— s e e a— — e . . S — — . —— e V(Y - - e
‘e 1
]
.
! ¢
t
\ [X6 3
‘
]
]
]
M
[V
’
]
) o~
] w
w] (5]
- In~ z
v t w
Q ’ -~ < X
- 1] v > <
' o « ul
W] - £
) 10 w w o
[}] > -
b od 1 ~ & <
(%]])
] w - g
w] “w x 2
[V FUN o
[] - w
-l [} o
3 - Ad
w L) w
[- 4 [] wl
- I~r =™
 J Coe o
‘vv [o] o
d e t 0.
o]
v '
L Nl
¢
]
b
1
»
"oy —— S b e
]
’
!]
. - - O
) - o
[T LR =]
t " U=
\] -0 > &£
N ’ P VYY)
§ -0 oxX
o O -] ~ © "2l -~ ” ~ - [gn]
w -
>
[
(S
w <
[TV 7} N
DI~ 2
OX NN
DO w
o ww
e
149
0 ORI SOOI R ISR O X RO
-""4."n:i':','?':‘fit"_lz','n:".ﬁ:‘.ltl!&!"«t‘fi:'tl:‘fin‘!lf‘f':",'s‘?’:‘:l:‘-'t‘t'n‘,!'t";’i‘t’&’:‘&*.’A‘»'"‘..‘!,'\'0‘9"?'",!'&"-M!ﬁ'_‘lh Ak‘t‘r‘l""b’?l"v": S

3
L) 1)

»
,"4", LN

OGO
\ "I..b.‘.ifl

T T T T TR A R T I A AN N AN NEA N AN AN LA F VR G S LUE AR U LS B Y B ism s s s vw

THE MULTI-LINGUAL.STATIC ANALYSIS TOOL (MSAT)

o PROVIDES STATIC ANALYSIS OF THE SOFTWARC

o AUDITING

e COMPLEXITY MEASUREMENT
s STATISTICAL ANALYSIS
o INTERFACE ANALYSIS
o COMPARISON

o ERROR CHECKING

o STRUCTURAL CHECKING =

o PROVIDES QUALITY ANALYSIS OF THE SOURCE CODE
e PROVIDES VISIBILITY INTO THE SOURCE CODE
o PROVIDES CONFIGURATION VERSION COMPARISON

150

- -
b5,

-
L

S

. W
I K| @

P P -

- -
R

St A A4,

,J .
- -
ASy:

A~

?‘.:r:}

Sk YL
Rt

L 00

AN

@~

-,
A]

.

o

LIPS ST |

..
ey e
. f-

"
W
:
Dl

(]
?l".f_t‘

ANTICJPATED MSAT USERS

SOFTWARE DEVELOPERS (S9A)

VERIFICATION AND VALIDATION
DEVELOPMENT TESTERS

USERS (TO UNDERSTAND SOURCE/ALGORITHM)
SOFTWARE SUPPORT CENTERS

SOFTWARE LIBRARIES

151

W

ESOAON 4 0 DONCK) O Q OSSR
0,08 O "lz"t:"v."t Ol)"—".".I ‘l,‘fv“'j:“n:'?t:"::"o!‘%“?n!lfnt",!!'?!:“M"f‘!‘t"fot‘?tt‘fm\.i'lfi‘tei'oJ‘a!l_'-:‘.".".et'u.

»

U
l':..l‘ml?:.“,'ﬁc i

R
.
§¢§
‘. ﬂ.‘
s
e
Y
3 : FUTURE_DEVELOPMENT PROPOSED TO STARS
i;.; A. DEVELOP INITIAL ADA CAPABILITY
i":: B. MAKE THE SYSTEM TRANSPORTABLE
[o CONVERT SOURCE TO ADA
DOy
R o ELIMINATE VAX/VMS DEPENDENCIES
o o STAND-ALONE DBMS
o C. ENEANCE ADA CAPABILITY
i D. DEVELOP A LIBRARY OF LANGUAGE CAPABILITIES
s E. EXPAND THE STATIC ANALYSIS CAPABILITY
w F. EXPAND THE DATABASE FOR MANUALLY COLLECTED DATA
i

o T S e
& o ¢
RS 5t re

SRR

SOALOA

$iw
L

._.
-
RETA

'b“‘
LA

1@

152

& ki bl ENHNEEBY WHWARN AN EVTENENEN ST EEN B AN BIVETVEIL RS B\ 30 3041 I BN RS RN Iy

.
0

Uy)
nhR

Vo iy ke

Ll W B .. s

e
e = A e ®

ol e W -

I LX) .

RN X R

L™
RATR

FY86 MSAS GOALS

o INITIAL CAPABILITY TO ANALYZE ADA SOFTWARE

o CAPABILITY TO ANALYZE SOFTWARE WRITTEN IN PASCAL
OR SIMILAR LANGUAGE

o START OF CONVERTING MSAS TO ADA AND MAKE TRANSPORTABLE
TO OTHER SYSTEMS

®
B

CURRENTLY MSAS HAS CAPABILITY TO ANALYZE FORTRAN
AND 8085 ASSEMBLER CODE.

153

P W \, ¢ : O N N T S S S DN D AT
AR ARGy G R R R TR e e Al ettty S R i g e e e e

-

S ".’w‘ e s —~

R i e P

Y
Xt M a

”‘- R W]

2 e
- - -

- gn eh - -

TN T YT T Y e

tz

o

Ot l"‘l" ahah """

()
a‘. ittt 'u"'x'.

A CLASSIFICATION SCHEME FOR REUSING
SOFTWARE COMPONENTS

Ruben Prieto®
Barbara Moore

GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254
(617) 466-2933

Introduction

Software reuse in the context of this
paper is the selection, modification and adap-
tation necessary to fit an existing component
into a new software system. The focus of the
paper is on the selection problem, i.e, the
ability to locate and retrieve an appropriate
component frorn a large collection of com-
ponents, such as collection of Ada libraries.

A classification scheme is a domain
knowledge structure that organizes collections
of items to satisfy the needs of the users of
the collections. The GTE Reusability project
has performed an in-depth investigation on
classification schemes with the aim of identi-
fying and adapting one that satisfies the
needs of software users. In this paper a
faceted classification scheme is proposed.
The classes in the scheme are identified by
collecting descriptive terms from component
descriptions and grouping them by their rela-
tionships. The set of collected attributes
form a vocabularly of terms that can be used
to describe software components by their
reusability-related attributes.

The main features of the proposed
classification scheme are expandability, adap-
tability, and consistency. Expandability
means that new classes can be added with a
minimum of reclassification problems, adap-
tability means that the scheme can be cus-
tomized to a particular environment, and
consistency means that components from
different collections in the same class share
the same attributes.

*Part of this work was conducted at the University
of California Irvine in connection with the author’s PhD
disseratation

A‘. [l"é

il.; Y a"’ "

RGO R

This paper also reports current work on
a software-supported query system that facili-
tates retrievails based on the classification
scheme described.

Library Classification Schemes

Classification is the act of grouping like
things together. All members of a group- or
class- produced by classification share at least
one characteristic which members of other
classes do not possess. Classification displays
the relationships between things, and
between classes of things and the result is a
‘network or structure of relationships which
may be used for many purposes.

Classification is a fundamental iool for
the organization of knowledge and pervades
everyday life from supermarkets to
warehouses to schools. A library is usually
considered as the typical example for
classification where a collection has been
organized for easy access and retrieval. A
collection owes its organization to a
classification scheme which in turn is based
on a controlled and structured index vocabu-
lary called the classification schedule. The
latter consists of the set of names or symbols
representing concepts or classes and is listed
in a systematic order to display the relation-
ships between classes.

Classification schemes can be arranged
in two ways: enumerative and faceted. The
enumerative or traditional method is to pos-
tulate a universe of knowledge and to divide
it into successive narrower classes which will
include all the possible compounded classes
and arrange them to display their heirarchical
relationships. Dewey Decimal classification 1s
a typical example of an enumerative

155

U (]
RO WIOTA DA MARAOIS SN

AR DR SR

TETLSNMIT FNVERT VS W IR RIS TR

W, ‘.

\j

T T P P U T T U T T T T U T T UREIN E N U R ENE N PR EN AN AN RN AN WA WA AN A R UL S VY VS ST USRS Ve U R

.5

1
\

A
£F

PEL.

&

decachotomy based hierarchy. All possible specific classes, .large groups of very similar

classes are predefined.

The faceted method relies not on the
breakdown of a universe, but on building up
or 'synthesizing’ from the subject statements

components.

An experimental collection of over 200
program descriptors of modules ranging from
50 to 200 source lines of code was used to

4

e

of particular documents. By this method,

7z

derive facets and terms of a preliminary

',‘;,_‘-, subject statements are analyzed into their software schedule. Two groups of facets
:-" 5 component elemental classes, and it is these were identified: those describing functionality
\.‘I]

[]

classes only which are listed in the schedule;
and their generic relationships are the only
relationships displayed on its pages. When
the classifier using such a scheme has to

and those describing the environmeat, three
in each group. It was observed that program
descriptions consist of two parts: one describ-
ing the functionality (i.e., what it does) and

)

Ze%

: N express a compound class, he does so by the other describing the environment (i.e.,
& s assembling its elemental classes. This pro- where it does it). Implementation details or
:.:;. cess is called synthesis and the arranged realization (i.e., how it does it) were not usu-
groups of elemental classes that make the ally included in a description. So, function
y scheme are the facets. Facets are sometimes and environment were selected as facets and
0) considered as perspectives, viewpoints or realization characteristics used as discriminat-
: ',: dimensions of a particular domain. ing factors to separate similar components.
..":' Systematic order in a faceted scheme It was observed that functionality
A consists in ranking the facets by citation ' equivalent components performed essentially
° order according to their relevance to users of the same function and that differences in
o the collection. Terms within facets are their realizations could be identified indirectly
'3-:: ordered by their relationship to each other or through some intrinsic characteristics like
:ﬁ- their conceptual closeness. There are size, complexity, and programming language
oy different user selected criteria for ordering used. Implementation differences based on
:;«-:: terms and by convention, this ordering con- intrinsic factors are approximate and valid
e sists of a one dimensional list where concep- only when the number of functionally -
{ tual closeness between any two terms is equivalent components is large. W&
M ‘measured’ by the number of terms listed ~
:‘::. between them. When. clgssafymg in a faceted Functionality - The three facets for func-
"l scheme, 'the most ;lgnlﬁcant term in the tionality were identified by observing the
’:“ classification descnpt‘mn is a term selected imperative nature of statements describing
i from the facet that is most relevant to the functions. e.g., |
user. i
‘ g ’ <input, character, buffer>,
ad Software Classification <substitute, tabs, file>,
b 2n, . <search, root, B-tree>
5 Faceted schemes are very attractive for
" classifying reusable software because they Description of functionality therefore consist
i are, in general, more flexible, precise and of
o better suited classification scheme for reus- < function, objects, medium>
) able software components has been proposed
‘o by one of the authors (Prie85). The scheme where fqnctiop is a term naming the fgnc-
K :: proposes a component description format tion, objects identifies the objects manipu-
oy based on a standard vocabulary of terms, lated by the function and medium identifies
" '_‘;: imposes a citation order for the facets, and the 'locus’ of the action, usually a data struc-
a ." - provides a conceptual metric to measure con- ture.
= ceptual distances between terms in each facet Environment - The facets for environment
R for a more effective selection of closely were identified as:
i related items. The scheme is based on the < functi ,
-4 . criteria that collections of reusable com- system-type, functional-area, setting>
'."‘v ponents are very large and continuously where system-type is an application indepen-
- growing, and that they are, even in very dent name typically given to the basic
: &
',;.;. .
) .
;:" 156
)
LA
L

{ : N4 ') 0 Ui IO 3 YO MY O CRION O TN K DY) 0 D IORON
R R RN A SRS e e e e i e e e e e

o o
Rode '.'.{ﬂ. A

i@

T
: ’
’ "’I!‘i’ll % i

oy

ol

3
K

in functionality. For

function described
example, report-formatter, scheduler, retri-

ever, expression-evaluator, etc. Functicnal-
area describes a particular identifiable applica-
tion dependent function. It is usually defined
by an established set of procedures in an area
of application like general-ledger, cost-
control, operating-system, etc. Setting
describes the location where the application is
exercised. It captures details of how to con-
duct certain operations. These environment
facets, reflect to some extent, the nature of
the experimental sample used but collections
in other domains could turn up with other
facets such as type of security, accessibility,
or design methodology used. A descriptor
(i.e., classification code, call name) for a pro-
gram consists in defining a term from each
facet as in:

< substitute/backspaces/file/text_formatter/
program_development/software_shop>

Conceptual Closeness - An important feature
of this scheme is the introduction of a con-
ceptual graph to measure closeness among
terms in a facet. A conceptual graph is an

acyclic directed graph that relates every term.

in a facet through a set of weighted edges.
Terms are at the leves and the nodes are
‘super types’ that denote general concepts.
Weights are user-assigned; that is, the closer
the user perceives a relationship of a term to
a supertype, the smaller the weight. The
example in figure 1 shows a partial weighted
conceptuai graph for some function names.
The notions or supertypes are all related to
the notion of function (*) which is the facet
name. Closeness is then measured by the
closest path between any two terms; for
example, measure is closer to add (i.e., 6)
than to move (i.e., 16). A reuser perspective
was used for weight assignment in this partic-
ular graph.

One practical application of a closeness
measurement happens during retrieval. If a
particular term in a query does not match any
available descriptions in the collection, the
system then tries the next most closely
related term to retrieve descriptions of
closely related items.

An abstract view of the scheme is
presented in figure 2. Each component (a)

-y, BOR He Y,
--a?t'o’;‘;'.i'ih Wt

has a descriptor (d) which is an ordered set
of terms from each facet (F). Every term
in a facet is related to one or more super-
types by means of a weighted conceptual
graph. During retrieval, a query is a valid
descriptor d of terms selected from each
facet. If there is no match in the collection
for d then closely related terms are selected
by computing distances in the corresponding
conceptual graph to make new descriptors d
2< i < n. Matches on subsequent d ‘s will
retrieve components closely related to com-
ponents described by d.

It is assumed that components require
some modifications before being used in a
new application based on the fact that code is
very specific and an exact match between
requirements and available features is almost
impossible. Code is the distilled product of
several design decisions for which there is
usually no documentation unless the whole
refinement process from specification through
design through code was captured. Even in
these ideal circumstances, the refinement
process is so long and involved that its mere
analysis and understanding would overcome
any reuse effort. Understanding of com-
ponent characteristics through indirect means
is therefore essential.

Current Work

The faceted classification scheme, the
conceptual distance model and a mechanism
to evaluate and rank functionally equivalent
components were integrated into a prototype
library system. An SADT level 0 diagram of
the library system for reusable code frag-
ments is shown in figure 3.

This library system can be seen as a
group of procedures that help in query con-
struction and in the evaluation of the
retrieved sample for potential reusability.
The data base of component descriptors is
considered to be the catalog.

The query system (boxes 1.2. and 3)
makes use of the classification scheme to
interactively generate component descriptors
(groups of valid terms used to describe a
component). The system guides the user in
selecting valid terms from the classification
schedules and enforces a citration order for
the terms based on the established relevance

::‘:"'

@

T

A

::% order of the six previously defined facets. A software metrics and on reuser experience.
.n:.. : query is a six-tuple descriptor of a com- Reuser experience is used as a modifier for @
O poneni. A query may be modified by inser- the other metrics to adjust their relevance.

' tion or removal of terms in a prescribed . .

& order (from less to more relevant) resulting Tests with the library system showed
,:‘: } in a specialization or generalization of the bet}er rgtneval performance in terms of user
,':‘c query. satisfaction than regular relational data base
K systems. Because of the relatively small size
KX A query may also be expanded. of the collection and the limited number of

Queries of closely related terms are con-
structed based on their conceptual distance.
Conceptually closer terms are selected first

participants, the resuits, although very
encouraging, are only indicative at this time

N rather than conclusive but work is on the way
:.&. for the new queries. Groups of queries are to scale up the collection and test the system
! ordered by their relevance to the original in a production environment.
«::h: query. The result is an ordered set of queries
N from most to least ’related’ to the original Effort is under way to impiement these
14 query. Scope of expansion is controlled by concepts of software classification and reusa-
o the user. Expansion is used when the origi- bility in the domain of information manage-
1" nal query returns the empty set. Query ment software at GTE. Reusable assets has
Vet expansion is central to the library system. been the focus and a preliminary analysis of
e the assets domain has resulted in the
")‘:,‘: Retrieval (box 4) is implemented by a - definition of four basic facets; asset-type
b relational data base system where each pro- (e.g., software, hardware, information),
) gram descriptor is a tuple in the database application-area (e.g. business, telecommuni-
IR with pointers to source code, documentation cations, systems), complexity-level (e.g.
oy and other relevant information. Evaluation code-fragments, subcomponents, moduiles,
:. A (box 5) is a system of its own that normal- subsystems), and reuse-mode (e.g. modify,
D) izes reusability related metrics and ranks the adapt, use-as-is, call, insert). Work is under
‘& sampie according to the estimated reusability way to- expand facets and populate the
e effort required to reuse the components. schedules with appropriate terms for each
e)) facet. ' Terms will be defined from the @
.:,:.. Th_e evaluation system |s.based on the analysis of a representative sample of assets
R . assumptions that the collection of com- and asset descriptions. A library system for
»:1:0,1 ponents is very large; that several com- asset management will be the logical follow
;n:.'n: ponents in a given class of components in the up in this project.
:;!::\ collection may be functionally equivalent;

and that there is a need to assist the user in [PRIE85] Prieto-Diaz. R. A Software

selecting, from among ail functionally Classification Scheme, Ph.D dissertation,

equivalent components, the one easiest to Department of I[nformation and Computer
reuse. The evaluation mechanism estimates Science, University of California, Irvine,
potential reusability effort based on four basic 1985

ErrrYy
O

o
-
-

-

-

ry
- -
- e -

=
-
o e

%
K 158
)

AR
‘u K ARDAT m"'

QRGBONGE
Sttt nint ot intidntatadnt ot aded ".'o’l.v'l 'l‘ et rhatnngnte i (AR '.- Shninhuimnletadaly

N . N . R Loy Lk TTTTT T T WY TNV TT TR
s

L 4) 7 \\\\
i 100 NJ (100

| SN

! r) moving something from
1 its original place

notion of
replacement .

?5 enumeration,
:‘ count, move 10
: along a scale
'::n A .
Pyl ¥

’ 1 5 15
é'g %‘

N measure add move substitute delete
N Figure 1. A Partial Weighted Conceptual Graph for the Function Facet

° » Q)
p) notion of s)notion of

exchange

i | 159

)

0 R0 KXF dhe *' SORON
aei Rt ad il iy Aranitntntede "I."i Tty q‘l..‘t'.'s“'n RENER ot ttestotedtudi RSSO Nttt

! THE COMPONENT

b q THE DESCRIPTOR
I WY
(—j \ /

' = (Typs Tops ool
',':::: . Ar 1A+ 28 Tvy?
e
;l:i;. THE FACETS ~>_ / / /
Ad)
ot -

F1 F2 Fy
THE TERMS —5 7., Ty T

T2 T2 Ty2
13 T3 :

" agpganranee P ot
2" ; ‘ ; ! ol

THE CONCEPTUAL
DISTANCE GRAPH . g

;.' .‘ Fl: Fz:

ﬁﬂi \\:E‘\~\sx

il'

'Q'H m
:g. \
o

R

i T T2 Ty3 v - T

s Figure 2. Abstract View of the Proposed
”y Classification Scheme

THE SUPERTYPES

Ay
: | B
) |
' !

) .:Q 160

et ¥ AN e AN RIS TLOUC v g i AN DO OO RIOES
‘l"!‘ .l‘_;.l.q’il.lé l‘.“ ‘Q'!‘Q'ﬁqs_ﬂt““j“‘i"""‘}‘!‘\" \.' .‘.0. 6" ’ ?'_‘ Q:‘ .!l."?#i’"‘ !i‘.}"'\\' 'ﬂ,";g_'ﬁ!".‘ﬁ __',“'i7:;‘z'.“,“*ﬁ‘ﬁ:f;‘;‘l"‘;"’g" . w."r {.,. ‘_l"g i’g ,;?-g\'f’ U ’i 1 (5

wANSAS £1v1qI] © J0) WeIBNdy (12437 LAVS '€ 3ndiy

705459711 .Enzaz_

S1ININOGWOD 3T7@VSIIY IAITVIIY

o¥ uoo,M_ .

RN
aseg eileq
W Sdinqiilae
A1r11qesnay
W
3aseg ®vivq sicidjidsag
sjuauoduwod
3rqesn3ax [0 S¥014142S30)
jo sy mww«mﬂﬁu 1 ININOWOD ™
panuey) \< IAIINLIY
101dt113s3p
30 1S¥1
paiapig
1430 ’ ~
aNvdx3a o
satiand
101dy13893p N
o dnoia
) o pand | ! oswisy
3duayiadxa T angidyaos3g
VW
12903 f _
) nay 4300
£ (8310118 K13nb A41Q0K
ys1eag hoidyassap . 1 shaness
\ 72 $371)2m P3TJITPOH K13nb 4l
asnay 103dg23823Q 9
. 4 sagnpayss
uotledtjysse()
NOILYIIIENd, oL 8 8 £ 9 8§ ¥ € T & SION
QIANINWOIIY)
14VHa} T :A3M w2158 181437 ;)43r0H
A1XILNOD 3iva Y3agviy] oNinbom| | s8=-111dv-02 ‘3ava Ze](Q-01371d UIQNY YOHLNY AV Q3ISN
VSN VGIZ0 STV WUl DPOY DUOY uMING 0P W1 UV 'S 3261 D wing
SUB BB0LS WHOS !<¢o<.o:w> avs
-
-
e E e ~ e e - h 8 Cs {9 - .l T PP o \" -
St S I M| @ RIS Y 22 2T L G] @ pEAIL] Pl

147,18 5
»'fﬁ'ﬁ;‘?nf‘.eof" ?

AR P T U AN TN
f s e e

(T et RIRTA
120'%(3;’:'5?:‘.’ .

)
R

) ,04';, W,

.
-
s
-
-
Lo
-
-
-

v -5,

" (]
~"ﬁ:§ﬂ; J.'g

o

W2
U !" 'e"b 5’@ N

K
"t ‘e

?
A

LTI i)
& .,"l.llﬂv‘i!;:‘i

(RO PO
e e

J
.

tigphee

RO N
IO R M AN

A SOFTWARE
CLASSIFICATION
SCHEME

Rubén Prieto-Diaz

Sofware Reuse Project
Computer Science Laboratories

GTE Labs.

October 7, 1985

162

Y e
ISR X
AL IGnNh

Ui XL OO0 (] AOOGOCOOOIOND LY 4, ghy
N e R A X I R IR A A B O Wttt

CLASSIFICATION SCHEME:

1- Definitions

2- Classification Séhemes

b % | 3- Faceted Schemes

A - 4- Our Scheme

i fryuiy

R 163

WAt : ") ¥ A0S D D5 OO0 OO
B N N o O M N DA KA AR A RSSO S AN AN RN Y oo oy i o g, Vet oy e b i g

el -
‘.‘.‘ -
o

T e
P d

DEFINITIONS

"

Classification: Discovery and display of concepts and
R their relationships.

oy Example:
“ Eagle -- bird of prey, day hunter
s Owl -- bird of prey, night hunter

f Classification Scheme: Tool for arranging concepts and
relationships in a systematic
order based in a controlled
index vocabulary.

e e
P 2 o

K
L]

Ao

Index Vocabulary: Ordered set of names which

M represent concepts.

Y

Examples: _
vertebrates-amphibians-frogs-toads %

A 000 Generalities

= 100 Philosophy and related disciplines
u 200 Religion

N 300 The social sciences

° 400 Language

500 Pure sciences

b : 600 Technology (applied sciences)

\ 700 The arts

L 800 Literature

" 900 Geography and history

R 164
0

u

o
’
4
)

} ey 0y W% Py 05 150 VY q Q !] L, v WS ORI OBROG000
TG, t'-'.l’t?!‘.:i'-‘l?:!\‘::l%v:':?0’-3*.’:5@‘«. ar o!l’,:!l’c!l?:'l s e) 'v.i't.‘l‘*fi'aflh:i'vfi'e!l‘e‘,!'faﬁ'af0'.fo'ofl'aii?ﬂ!’ne‘..’t‘iﬂ'»f"_02#'«!l.'o,i?t.‘t!’oAt's_"a,l‘,a,_i',q,!,o.‘

Y T T W W W haiiad oo -y b e dh i dh o —- L adhd

"
(-) <
=5

Relationships:

' Hierarchical — Indicate subordination or inclusion.

o (animal-vertebrate-birds-eagle-golden eagie)

g Syntactical — Between terms in classes defined by
i one or more characteristics.

R migratory birds
'y birds of the sea shore
n the respiration of birds

" Classification Schemes:

'. QE‘I 1

Faceted — Based on synthesis

iy

":; Enumerative — Based on exhaustive listings
2

o : Facet — A perspective

-

T

X 0 B s

R

165

CAIOR OO OU OO OISO OO OOIOOC AR ONOSOOON OGN WAV ot R P e 80 B
3 q!'fq. l’a’ ‘SQ“‘.,Q.TQ.‘. \ u'i.-'l.\ q'\‘,-'l!u'(‘.’.’.'t?:.h‘.‘:? 3 ‘Q'\?ﬁ‘:.. oy \'lgo'!‘o.l‘,:.i.o'*:' l!-‘l‘."‘ "“?'Q‘!'&!.m‘gﬂ‘ :‘n‘?ﬁﬁ.?‘ s‘fhat ‘i.!.k.:' \‘l(..n. ¥ r‘»“ -“' K

St e R T Ve 2 LT
* - .
R N S

DY)
1“,*’«“1'!’

AR AL A i PNy

Lo 4@

P g o B)

f
"
4
§

¢.
¥ }.
- 4rl
o

EXAMPLES

Domain — animals/fauna

Facets — by effect on man

by habit

by habitat
by land form
by ground cover
by latitude
by element

by zoologist tazonomy

A Faceted Scheme:

(process facet)
r’hysiology
Respiration
Reproduction

" (animals facet)
(by habstat subfacet)
Water animals
Land animals
(by zoologists’ tazonomy subfacet)
Invertebrates
Insects
Vertebrates
Reptiles

166

...............

D .
........ ! N T M O KO

.u;’.u

'.n.' ‘-'4

An Enumerative Scheme:

Physiology
Respiration
Reproduction

Water animals
Physiology of water animals
Respiration of water animals
Reproduction of water animals
Land animals
Physiology of land animals
Respiration of land animals
Reproduction of land animals

Invertebrates
Physiology of invertebrates
Respiration of invertebrates
Reproduction of invertebrates
Water invertebrates .

Physiology of water invertebrates
Respiration of water invertebrates
Reproduction of water invertebrates

Land invertebrates ’

Physiology of land invertebrates
Respiration of land invertebrates
Reproduction of land invertebrates

Insects
Physiology of insects
Respiration of insects
Reproduction of insects
Water insects

ete....

167

¥y %0

- 7
- AL - by Rt J : Ry Rntnbin e e XY S oI
he e RSy AR RO A G R O RO GO G O e Attt LN .

e ENUMERATIVE

+ Extensive

+ Usually incomplete
+ Rigid

+ Central hierarchy

e FACETED

+ Brief

+ High resolution

+ Amenable to automation
+ Flexible

.,
-

oL
4
%)
“»

R

3

' o J;;S"} ;'}

Pt
‘f ?‘"

X%,

fodidot X,

IS} @

> 168

. i .) R . - . 4 . r - - A ~ 3 ; 0 . O ! ' 0 0) i ' it
X ‘ { RNy OO O N e 3 Worttas b, 0t %ty feahy gt Vg
A ettt e e e et e B R R N T O N M el

- T WSS W W ot YT RPY ETEIT IV T TR T TP W WY LY W UW TR TR VELENR YR XN TR 'a SR 2% o' |
w = T TARE La_%a %

FACETED vs. ENUMERATIVE SCHEMES

fiin

ol ak ~ab call vak ik B AR Sak s i x

B FACETED SCHEMES

o e Facet Ordering
2
:
B Animal Facets Relevance
,:?., Pespective more > less
R M5
;:" Zoologist taxonomy habitat habit effect on man
P
:!:_ Marine Biologist habitat taxonomy habit effect on man
r Environmentalist effect on man habit habitat taxonomy
N
b e Term ordering — Display relationship by
) | liny derin
Q infear ordering
1%
.
1A
e mercury solitary animals
4
r o venus herd animals
L] S8
:E" earth social animals
e
o mars etc..
[
D etc..
bl
g . . .
i e Synthetic Classification
oY
o title classification
2 .
&
:': a) Salt water fish —----e—m- > fish/marine
Vj b) Frogs of the lake ----~en-m- > frogs/lake
:J ¢) Butterflies of the river ---> butterflies/river
=
' S0
S
P .
:3. 169
e
°

§ VPPN 2 BT "R N, NG] OIOT ORIV A AR OO IR0 NN O
L T R R ORI e AN R AR A AN

il
- .

o

247

I
A

L

3

<

X
P

-
-

a oy
-

ALY
DNt A

OUR SCHEME — Faceted

- Precision on software component descriptions
- Expandable
- Flexible

- Provides metric for closeness of relationships

Metrics:

- Facet level — Relevance between facets

(facets ordered from most to less relevant)

- Term level — Use of user defined supertypes .

<

” S
' | N
100, 7 100 ¢ 100 SJ 100
s ! SN
s ' r) moving something from
Phd ‘ its original place
'
7) ~
P q) notion of ~
p) nmotion of replacement 2 sThotion of
enumeration, exchange
count, move
along a scale
1 5 15 5
measure add move substitute delete

170

OO FOLMO O O A S A0 K \ Sou ity
BT ICR L S MR R IR S t",‘30!‘.""!!'.0:2',':0’“-\f’!‘f‘tﬁ"’b’.".‘?‘t!!‘} DSOS SIS DAY

g thatigh,

%

L]

ABSTRACT VIEW OF THE SCHEME

THE COMPONENT

THE DESCRIPTOR

f
I~

Ar= (TlA' TZBJ Y TNJ)

THE FACETS \\:ELNhI /////////////// //////

F1 Fy Fy
THE TERMS — 1, Ty T
T12 To2 Tn2
T3 T23
TNy

THE CONCEPTUAL
DISTANCE GRAPH

\ Fl:' Fo:

THE SUPERTYPES
Tin T2 Tyz v v v Ty

171

R)
. R, . . —) O
Y {] DO 4) % iy XS CRIOCN) DML IO Y s bt ey
§I :'D. :'l‘.'. n’“l",h'ﬁ.:‘ll".!" ,u“?’p‘l‘o' 3' !‘i’t‘!‘q’:’o’l‘!’”&.- 5 q'..,!. Bl t, l!':‘hl !’l !':‘.!‘S‘J» 2'l‘?‘h‘.':"'n‘!Ut"h"ﬁ‘.‘l‘ﬁl XA BN ,h‘,l ‘!‘s‘.h‘.‘»‘.h &

o
NN

IMPLEMENTATION:

-y
]

Observations
2- Facet Selection
3- Synonym Control

o - 4- Component Evaluation

R &

R 172

AR 1 D OUD OO0 OIAR0 T 00DRORODOE N NI
o A D o R R S A e DX AR A K AR IR Y

L TR TV T T T EFTENEWN

¥ ¥ OBSERVATIONS:

e Component Descriptions — Syntactical relationships
among terms

o~ e = s

"-
>

add file to archive
read lines from a file
convert string to floating number

ey Lo P

VR] @ Ak

e Tension Problem on description detail -

" b c ..
] High - Precision in
B descriptor

Probability of

Low a match

. Low High

number of facets

)
-l hmn o

& S

X 1 7 3
R

¥,

. p \ 3 3
N . OGN (IS J NN ORI DN NS ONI) Dttt et e e
n':fs‘f'l‘:\"'A‘:'l':',n':fl'.'a':!s*"l’:fa':2&’.‘.l"'i’s'l?afl'»f('a?l'e’.l‘f!‘i’ S TN A A T O S NSO R K R Y TN YOO

b (RN A

LI N me e o, Y

> g

-~

?
k)

RGO ()
JODOL 0N

bl

PARTIAL SCHEDULE:

FUNCTIONALITY

(citation order —» — — —)

{function}

input
output
move
append
insert
extract
substitute
delete
compare
parse
decode
search
measure
split

{objects}

tabs
backspaces
digits
characters
patterns
tokens
integers
reals
words
strings
lines
buffers
files

tables

lists

trees

174

{medium}

keyboard

‘mouse

sensor
printer
display
cards
tape
disk
speech
file
table
buffer
stack
list
tree

. .

e LA () XA NN 5.0 WY !.Q 't i‘;-’ X) J." X) .“t‘|‘¢'4'uf&'o‘,l?.fﬂ..',c’hfo'z,‘t’.fi‘fa',.‘c":t‘f:’&Qﬁ;fa'?’, i i’»'b’.'t‘e! XY
A ..)..'||.. AL WY, ."n‘..p O A Oy T, o 1 N A AT N 00 T 0 W VY,

r—r Ll Ld T e
R T T Y T TR WY EPUR WY W e

‘.".
2
L4
§
i
. SYNONYM CONTROL
§, Why? People have different interpretation for
e different terms.
’.
> ° <move, words
K < ’ >\
o /same concept
?::3 < transfer, names>
4
: : :
o Need to unify descriptors under same concept
o '
3
..
.. - SOME FUNCTION SYNONYMS
3
R |
b GIVEN NAME SYNONYMS
W
0 € ' | input data_entry/scan/enter/read/
5;25 output data_output/print/echo/show/write/display/
1;§ move transfer/copy/
%’“) append affix/attach/concatenate/join/
::}'. insert include/push/
' extract pick/
g?; substitute replace/exchange/transliterate/
L delete remove/erase/cancel/
\ "E compare test/
3 " parse recognize/
o decode multi_way/muti_branch/selector/
search look_up/find/
~
o measure count/advance/size/
- split separate/break_up/
)
°
- 2
¥ S A,
K1 175
Kot
o
Y
.:::

{J DCOG00400
i """'l'..I..‘.i‘.’Qi:!\‘t'l.!.li.’|‘q.‘ !'

s 0 DO TN Ve th, AL 3 KA KON OO
Ittt et datlatin ittt tndadndi i) OOCRRX N OGN D

OO D
‘\ s (LA

LA
L

R

2 o 0
FaprPL AL

K

o

o
X B AL

azanafy

.,4,
[4 ot

COMPONENT EVALUATION

e Attribute Selection Criteria

- Validated metrics

- Objective

- Easy to use

- Related to program understanding

e Selected attributes

- Program size — Source lines of code

- Program complexity — Conditional statements

- Programming languge — Similarities between
source and target
languages

- Documentation — Quality score

176

000 ST TN T AN OO0
K S R N R N A e I

r T T T TR T T R TR T PTY R YW TE YO T TERTIRY S W WY WEwW VYN T N T

METRIC NORMALIZATION

@

. Why? Ability to rate and rank similar components
::'

i

‘ [] L] L

. Problem: Attribute metrics function of other factors
Kl

] . . .

3 Introduction of memebrship functions

; from fuzzy set theory

£

4

* EXAMPLE

R Attribute: Component Size

k)

[} .

“ Measure degree of membership to

< - the class of small components

L) . 1 APL

L -+ FORTRAN

» . Assembly
v‘ g

h ac

‘- -;Q g

o

2 0 ; .

3 10 100

- . Lines of Code

; Role of Reuser experience:

o

9

i

@ modifier of membership functions

C

4] Small Component

:' 1- from a neutral perspective
" e for a novice programmer
r = for an expert programmer
o ®

- £

o g

o 0

K - T R RS 1 T

p 20 40 60 80 100

¥ ;S:}‘ lines of source code

)

D

P 177

l

'

q

3

REAE e T R A A N R o e e R R T

3 B | &

w 205454571 “cwns.:z_ SLNANOGROD VS .._>._:__.,_,= ERI W 300N
m asey e
2 N soanpane
R r~ ATErYUsnay
] :
q o
v. aseg eiv(q s203dfairsaq
5
:
m sjuauodwod [3 r 3
arqesnax {0 SHOLJ18DSHU [. A
i jo 18— mww«mwmnuu $1 inanodwod [/
W pajxuey IAI1YLAY
m %wuou.:uunav
v 3o I8s11
m paiapag
€
g ’ A¥3INd ™
m awvaxa fo | &
¥
] sajaonb 1
] 103dja383p i
m 30 dnoig A¥3ND FI_|~ suia]
m f 2ouafaadxa T IATIAJIDEI
u TAVH ¥3d} (¢}
: mo a1asnay Ayand
,mu £8a1e11s £1anb AJ1U0K
v yoaeag k_o“.a:u.awv 12 snanesa
m \ 8dF 133w P2FITPON £1anb nInesayL
asnay 103dyad82ag
ﬁ & saynpayog
uoflEdFJISSETD
q_ NOWVYII8Nd 0L 6 8 £ 9 S ¥ € T 1 ‘S3LON
1 GIANINWNOIIY
] 14vH0 Z A3y wa1shs £181031 4530044
] ‘AXIALNOD 31vQ Y3av3IyY ONINBOM $8-1¥12dy-0zZ :31va zrjy-013f1d UIQNH :yOHINV AV Q3IsN
] VSO PSIZO TN WEYLIPM PrOY PUD UANI0L 096 T L URLINS GL6L & W04
1 S1/6 86015 WHOY WYHDVI0gL0VS

WALSAS AYVHElT

- »

o R R A O P P Q] O R & K i,

b

v
]
]
t

1)
N
8,

SUMMARY OF CONTRIBUTIONS

e An expandable and adaptable scheme
for software classification.

e An approach to measure closeness
among terms in faceted schemes. -

‘o A process to define facets and

introduction of six reuse related facets.

e Introduction of six reuse related
attributes and their metrics.

e Ability to normalize reuse related
metrics by using fuzzy functions.

» These concepts can be integrated into

a library system as demonstrated by
prototype.

179

R A A T R A O R e s

«'n

&

GUIDELINES FOR WRITING REUSABLE
ADA (R) SOFTWARE

Rick St. Dennis

Honeywell Inc.
Computer Sciences Center
1000 Boone Avenue North

Golden Valley, Minnesota 55427

ABSTRACT

Software reuse is key to significant gains in programmer productivity. However, to achieve its
full potential guidelines for writing reusable software must exist and be followed. While language
independent, measurable characteristics of reusable software can be the basis for these guidelines, the
guidelines themselves should be language-specific. This paper describes ongoing research at the
Honeywell Computer Sciences Center 1o define a set of characteristics of reusable software as well as
guidelines for implementing them in the Ada language.

Keywords: Ada, reusable software parts, reusability, object-oriented programming.

Ada is a registered trademark of the U.S Government (AJPO)

This work was supported in part by the Office of Naval Research under contract number N00014-85-

C-0666.

1. Introduction

Both software production costs and the
amount of new software produced annually
are skyrocketing. In 1980, the U.S Depart-
ment of Defense (DoD) spent over $3 billion
on software. By 1990, their expenses are
expected to grow to 3$30 billion/year
{HOROWITZ84]. If current development
trends continue, future costs will be
increased even more by unreliable software,
software delivered late, and continuing
maintenance problems.

Today’s software needs outpace our
ability to produce it, as shown by the back-
logs in MIS departments nationwide, and
needs are growing each year [STARSS83].
There is and will continue to be a serious
shortage of qualified programmers to meet
these needs. One might expect productivity
increases for programmers to make up for at
least a part of this shortage. However,
software development has been relatively

small year-to-year productivity increases as
contrasted with dramatic increases in
hardware fabrication [HOROWITZ84]. We
feei ihat a key to significant gains in program-
mer productivity lies in the area of software
is an exponential function of its size. Halv-
ing the amount of new software built will
more than halve the cost of building the
software that we need [JONES84].

Software reuse is an important part of
the RAPIER (Rapid Prototyping to Identify
End-User Requirements) project for many of
the same reasons it is important tc software
productivity increases in general. One of
RAPIER’s main goals is "...to develop a pro-
totype engineering environment [that will
provide tools and techniques for developing
modifiable prototypes ¢.ickly and inexpen-
sively..." [RAPIER86! The approach to
achieving this goal is to build prototypes from
- usable software parts. It is the characteris-
tics of these reusable software parts that will
provide the modifiability. and the rapid and

inexpensive development of prototypes that
RAPIER requires.

To date, no adequate characterization of
what makes software reusable exists. It is
quite common to read unmeasurable, qualita-
tive admonitions as to what makes software
reusable and/or specific exampies of software
that is claimed to be reusabie. However,
these admonitions (or "metacharacteristics")
and software exampies are not enough.
Measurable characteristics of reusable
software are needed as well as specific guide-
lines to implement them in source code.
Only through use of these characteristics and
guidelines can the full potential of reusability
be achieved.

The RAPIER project has developed
Version 1.0 of "A Guidebook For Writing
Reusable Source Code in Ada (R)"
[STDENNIS86], [RAPIER86]. This guide-
book contains three reusability metacharac-
teristics, fifteen measurable characieristics
that realize the metacharacteristics, and 63
guidelines for implementing these charac-
teristics in Ada source code. Guidebook
chapters are organized to follow the Ada
Language Reference Manua' [DODS83]. Ver-
sion 1.0 of the guidebook contains selected
chapiers covering all major Ada program
units, program structures, compilation issues,
and visibility rules. Example Ada modules
that were written following the guidelines are
also provided. This guidebook provides the
RAPIER project with a basis to begin writing
reusable Ada software parts to be used in its
prototyping system.

This paper outlines the approach to
achieving reusability we prescribe in our
guidebook. In it we list our reusability
characteristics, highlight one characteristic,
and provide guidelines supporting it. We aiso
provide example Ada modules written follow-
ing the guidelines, discuss the relationship
between our reusability guidebook and the
STARS Application Area, and outline plans
for future work.

2. Our Approach To Achieving Reusability

Qur approach to reusing source code
centers around reusable components, written
as Ada packages. classified for both browsing
and retrieval, and residing in a library or

software base. See Section S of (RAPIERS6].
We believe that the features of the Ada
language combined with a set of software
design and coding guidelines supporting
characteristics of reusable software wiil
enable creation and reuse of software in a
manner not possible with most other
languages and systems. These guidelines will
constrain how Ada software is written for the
sake of reusabilitv.

Companion work at Honeywell’s Com-
puter Sciences Center is also addressing the
organization and composition principles that
will provide a framework for reuse of com-
ponents. A classification of components
according to behavior has been proposed in
Section 5 of [RAPIERS86]. Program composi-
tion using an adaptation of the operational
paradigm for program design has also been
proposed in Section 3 of [RAPIERS86]. A
high-level language for composing programs
of components drawn from a software base
using a Prototype System Description
Language (PSDL) is being designed by Inter-
national Software Systems, Inc. (ISSI)
{ISSI86]. So the characteristics and guidelines
in our guidebook fit into an overall approach
to reusability.

3. Reusability Metacharacteristics

We propose these metacharacteristics of
reusable software:

(1) Candidate software for reuse must be
able to be found.

Findable software must comprise both
code and specification. At a minimum,
the specification tells users what a
software part does, thus allowing them
to decide whether it meets their func-
tional needs. A specification may
describe attributes of the software part
such as author, hardware dependencies,
execution time on a particular
configuration, and so forth which
further assist users in deciding what
software is appropriate.

The apparatus for storing and managing
software contributes greatly to its finda-
bility. That apparatus includes a
software base management system and
intelligent schemes for classifying
software so that searches into the

f]'d

182

Ol E I A SO TATONIRY. = To Attt ettt ntagdiegbagter = RtV intis i Tty g imiabin el Bt e Vgt

i~
e . o
]
Ad
I.Y

S
LAl o g s

X

Py, T

9

G

)
LA

T

[
Ay

° rie?

YO »
] . [y COl 'S
-“-“"-'1":':_

%

: [-
. L . ';“'-{Ni"-{'-

BT

software base are successful without
being frustratingly long.

It must be significantly less costly to
find software and reuse it than to
recreate it. Both the specifications and
the apparatus for managing the reusable
software must support relatively low
(human and machine) overhead for
storing software and searching for it.

(2) Once found, software must be under-
stood enough to be reused.

This requirement involves both the
software part’s specification and, if its
code is to be modified, the way in
which it is coded. There are judgments
to be made about what attributes of a
software part reusers need to know in
order to decide whether the software
meets their needs.

If the software is to be modified, it
must be engineered so that reusers can
examine the code and make changes
that do introduce errors or unwanted
side effects, and that do make the
desired alterations.

(3) Once found and understood, it must be
feasible to reuse the software.

Software that can be reused-

o is built for reuse - constructed under the
constraint that it will be reused.

o is fit for reuse (i.e., is a "plug- compatible"
part)-composable with other code in such a
way that it neither interferes with that other
code nor allows itself to be interferred with.

o displays conceptual clarity or appropriate-
ness - presents a useful abstraction (such as a
table, a database, a sensor or a stack) at an
"appropriate” level.

Each of the software characteristics
listed in Section 4 is a means of achieving
one (or some) of these metacharacteristics.
Figure 1 below relates each of the proposed
characteristics to the metacharacteristics it
promotes.

4. Reusability Characteristics
4.1 Criteria For Reusability Characteristics

The reusability metacharacteristics in
Section 3 are qualitative “good practice”

O R M be¥. L S DAL Oy AR A | y
t.t'n g o gn’ .'n'. d".!',‘wwd!‘.\ J 't".t Al NS n L ' " .l.a’i't AN ':,0‘0!6 "'t’t’t’o.l *"\,."Q . ‘l.l!l. _l.\!"‘

A AT A T
o

admonitions. In general, the characteristics
listed in this section are measurabie or judg-
able qualities that software should possess in
order to meet the metacharacteristics. We
have proposed characteristics that are statisti-
cally measurable or judgable today or will be
measurable/judgable once we have more
experience with reusable software. For
example, today we can measure if software is
free from hidden side effects. However, we
cannot judge whether software has the right
balance between generality and specificity.
Only when software has been reused for
some time, we will be able to judge this qual-
ity.

The characteristics listed below are also
reuse-specific; using them will produce
software that is designed and coded a priori
for reuse. "Good" software engineering prac-
tices will contribute to reuse but will not
specifically make software reusable.

Our guidebook only briefly discusses an
important aspect of reusability domain or
application specificity. We expect that appli-
cation specificity will be a major factor in
enabling software reuse [FRANKOW-
SKI85B]. However, just as all software
intended for reuse must be built using good
software engineering practices, it must be
built using application neutral basic reusabil-
ity guidelines in addition to application
specific guidelines. The characteristics listed
below are those underlying guidelines for
reusability across application areas.

In our guidebook, we post 15
language-independent characteristics of reus-
able software. For the purposes of this
paper, we list all characteristics and highlight
#4: Component is designed as object-
oriented; that is, packaged as typed data with
procedures and functions which act on that
data.

4.2 List of Characteristics

(1) Interface is both syntactically and
semantically clear [STANDISH84]

(2) Interface is written at appropriate
(abstract) level.

(3) Component does not interfere with its
environment;.

N

Component is designed as object-
oriented; that is, packaged as typed data
with procedures and functions which act
on that data.

An object orientation to code involves
mapping of "solutions” to our human
view of the "problems” the software is
trying to solve [BOOOCHS83]. Our
human view involves objects, attributes
of these objects, and operations on
objects expressed in a noun/verb sense
in English. An object-orientation to
software aids understandability since
solutions to problems are expressed in
our "human terms.

Reusable software should act on objects
explicitly. What we are advocating here
is a clear definition and method of "act-
ing” on objects. All actions or opera-
tions on objects should be defined as
subprograms (or their equivalent) with
the objects as parameters. Further-
more, the objects or at least their types
should be "packaged” as close to the
definition of the operations on them as
possible. Ideally, they should be pack-
aged together to ease location, refer-
ence, and use. To promote reusability

(8) Component exhibits high cohesion/low
coupling [BERGLANDS1].

(9) Component and interface are written to
be readable by persons other than the
author.

(10) Component is written with the right
balance between generality and
specificity [MATSUMOTOS84].

(11) Component is accompanied by sufficient
documentation to make it findable.

(12) Component can be used without change
or with only minor modifications.

(13) Insulate a component from host/target
dependencies and assumptions about its
environment, isolate a component from
format and content of information
passed through it which it does not use.

(14) Component is standardized in the areas
of invoking, controlling, terminating its

function [FONES84], error-handling,
communication and structure
[LANIERGANS4].

(15) Components should be written to

P it is better not to use global data that is ;)g)ll{)i;;](?omam of applicability [NEI.GH' .
o e . . » components should constitute
Lo changed implicitly by routines to which the right abstracti d dularity f
SN it is visible but to pass the data to rou- g straction and modularity for
Ny . . . L . the application.
-;..‘J- tines as parameters making it explicit
;.:i that (1) these routines are Figure 1 relates each of the proposed
I actors/operators on the data and (2) characteristics to the metacharacteristics it
:) that is just how this data will be treated promotes.
S (e.g., as input only, as a constant, and
AN so forth). 5. Reusability Guidelines
e Based on Section 5 of [RAPIERS86], we . .)
NN will define operations on data in context In this section we provide 7 Ada- .
N v as implementations of behaviors that specific guxdellr}gs from our'ggldebook that
-y characterize objects, the objects being support reusability characteristic number 4
e defined by the set of all behaviors asso- ~ Pertaining to object-oriented software.
A ciated with them. [FRANKOWSKI86A] also discusses use of
*’\:: an object-oriented paradigm to build reusable
:;: (5) Actions based on function results are Ada software.
e made at the next level up.
y 5.1 Context For Guidelines
[(6) Component incorporates scaffolding for _)
RS use during "building phase”. There are, in general, two kinds of

B reusable software parts - directly reusable

-}:.} (7) Separate the information needed to use parts and indirectly reusable parts. Directly
f-&j{ software specification, from the details reusable parts are those whose behavior or
A of its implementation, its body. effect is catalogued, that is, "advertised" in
N

L

e &

0 184

{ J

s

RO

a'::|

BGOSR 5 300 G KR : (ONX 0 OO0 000
sttt e W Ar it e gtg e e e gt ta et tidi it et n it ittt it s L g it il b

1 ¥

?'-..
LA AL

i
o, -}-,1’;1’*} P
":'1._1._1

¥ e¥x

“

YN
Iﬁlsl.,l."l

Pl

A

Y gt Y™

A A AT AR L R AV D
T LR e X Ry

LX)

the catalog(l) of reusable software that
developers use to determine what software
parts are available for reuse. Directly reus-
able parts are what developers search for and
choose. Indirectly reusable parts support
directly reusable parts; they provide the
environment, the ancillary definitions and
data that the directly reusable parts need in
order to perform correctly. In the ideal case,
indirectly reusable parts are incorporated into
the program under construction automatically
by a software base management system.

(1) A catalog can be an automated software
repository’s classification scheme, a list
of component names and descriptions
on paper, Or even a rumor the
developer hears from a colleague down

" the hall.

Reusable parts should be objects. As
abstractions, objects have properties (data)
and allowable operations on this data. The
Ada package should be the realization or con-
crete implementation of the object abstrac-
tion. Types and data objects/ variables
implement data; subprograms/tasks imple-
ment operations. Packages bundle these
things up nicely.

5.2 Sample Guidelines

The following guidelines taken from
our guidebook prescribe how to write reus-
able Ada software satisfying an object-
oriented paradigm. Guidelines G10-1, G10-
2, and G10-3 provide a specific scheme for
writing reusable Ada software in terms of
Ada compilation units. Guidelines G6-2,
G6-3, G7-2, and G9-2 support this scheme
for Ada subprograms, packages, and tasks.
We encourage use of generic subprograms
and packages in compliance with these guide-
lines. Please refer to our guidebook for
further details on the use of generics.

G10-1: Use library unit package specifications
as the encapsulation mechanism for directly
reusable software (i.e, data and operations on
the data).

Library unit packages are our “unit of
reusability” with packages specifications as the
standard unit for directly reusable software

's)

parts. It is the specifications of operations on
data as well as data contained in these pack-
ages that are directly reusable. These opera-
tions are in effect interfaces to reusable
objects. See Figure 2.

G10-2: Only "first level" nested nonpackage
entities in library unit package specifications
form the basis for "catalogued" directly reus-
able objects/software.

Ada packages can be nested to any level
allowed by a compiler implementation, and
nesting can be used as desired for imple-
menting reusable components. However, for
each of "cataloging" there should be a practi-
cal limit to the level of nesting of packages
that encapsulate reusable software. G10-2
simply states that only first-level data and
specifications for operations on data form the
basis for reusable software and are "catalo-
gued”. Data and operations within nested
packages are not catalogued as reusable even
though they are accessible to client programs
according to the Ada language definition.
Nesting can easily complicate the environ-
ment or context for reusable software. For
example, nesting provides an environment
for declaration order information hiding, and
visibility rules which is hard to reuse and to
understand, and in which operations and data
are hard to classify. Classifying only entities
that are visable at the first level as reusable
operations on data in context will avoid this
complication.

G10-3: Use secondary unit package bodies,
package specifications containing only data,
and subunits corresponding to first-level
package body nested stubs as the encapsula-
tion mechanism for indirectly reusable
software.

This guideline, along with G10-1, states
that all reusable Ada software should be writ-
ten in terms of packages. In particular, sub-
programs (with the exception of main sub-
programs) and tasks should be written either
directly within the declarative parts of library
unit packages or in that context through the
use of body stubs. In Ada, main programs
must not be contained in packages. How-
ever, we do not treat them as reusable. It is
the library unit packages they reference that
are reusable. Seconda:y unit (library unit)
package bodies are indirectly reusable.

185

T & MNEE TS ' 4 - AN,
R L A N K Y I SO

o
ot

o

Il i

&

Subprograms and tasks in the context of specific details of these abstractions not

.-...
>

;.‘, secondary unit packages (e.g., package needed by client software. ,
~::.o' bodies) are indirectly reusable. Library. unit }}ﬁ
;-'l package specifications containing only data Simply stated, decide what object
‘x'. are indirectly reusable as well. See Figure 2 abstraction a package should implement
o ‘todc.:lanfly the dl;ltmct;_on between directly and gecide what the interface to this abstraction :
.r:: indirectly reusable software parts. should be, and implement these as visible
DN G6-2: All reusable subprograms except a specifications for operations on data in the
' : main program must be written within a public part of a package specification. Decide

R library unit package. what the implementation structure of the

! o abstraction should be and implement this and

_;.:) In view of guidelines G10-1 and G10-3 all other details in the private part of the

ﬁ’ad reusable subprograms must be written in Package specification and a corresponding

o packages. These packages and their contents Package body. This separation benefits the

) are the reusable software in a software re- package itself and its environment. The less

"connection” a package has with the outside

ository; they are "glued” toget a main o
posttory Y gue gether by world (e.g., the smaller the visible part of a

program which is invoked from the environ-

ﬁ“‘ I

‘ ‘,_',._»’ ment. If this gluing is automatic or easily pz}ckage specification), the lower its coupling
‘..::\. specifiable in a very high-level-language, With other modules. Once modules in a
N main programs do not have to be kept in a PAackage’s environment begin to depend on
NN repository. It is the reusable parts that they particular visible entities that really should
av glue together that are important. However, if have been hidden, the package becomes less
® a main program glues together a "system’ and less insulated from its environment.
e

which can be viewed as a potential com- There are two strategies for providing

ponent of other systems, then that program ,pciractions as reusable objects [BOOCHSS].

should be put in a package which will be Tpece are: (1) using packages to implement
catalogued as directly reusable software and ,pgiract dara types and (2) using packages to

-3 - "
-y o
» -¢" A

h
9

:{,’—'.' shou}'d be called from "another main pro- implement abstract state machines.
£ gram”.) V"J!
: "l"_' 96-3: Use subprogram deglaratlons to specify (1) Absturact Data Types: Provide the basis
.«‘3'_*: mterfaces_to reu§able objects. Usq subpro- for multiple "public’ reusable objects
‘-,,.‘ gram bodlgs to 1mplerr_1em these interfaces with common operations on implemen-
ol and properties of the objects. tations of the operations in correspond-
2 ing package bodies. The object abstrac-
,)‘ The interfaces to reusable objects tion can then be reused by client
, ,'.:{ specified in subprogram declarations comprise software (multiple times) by declaring
Vot a name, parameters of particular types and variables (external) to the package and
}':3 modes, and return types for functicas. Sub- using the operations provided by the
o program bodies contain the executable code package to manipulate these variables.
heR fo. rzusable objects. This code performs use-
® ful work. We are saying that the use of both (2)

Abstract State Machines: Provide sin-
gle sharable, "private" reusable objects
and operations on these objects. Do
this by encapsulating types of reusable
objects in package bodies. This limits
client software from declaring and using
multiple instances of the reusable
objects since their types are hidden.

subprogram declarations and bodies is impor-
tant. The only exception to this guideline is
a main program callable from the environ-
ment rather than by other software. In this
case, a body alone is sufficient. This guide-
line is related to G7-2 prescribing that pack-
age specifications implement interfaces to
object abstractions and their bodies imple-

gy

4O P

.] ific details of th bstracti Provide specifications for operations on

o ment specific details of these abstractions. . reusable objects in package

,:.;-: G7-2: Use package specifications to specify specifications. Provide variable declara-

-’.:_' the interface to object abstractions: use pack- tions for the reusable objects and imple-

"‘ age bodies to encapsulate implementation- mentations of operations on the objects

<))
KD &
". »

o)

)

N

186

Ol ™ n T T AT e W W ¥ Wy % St
e e A i DN Ly AN

LYY

in the case where the types of the reus-
able objects are not "composite”. These
operations may contain parameters if
the types of the reusable objects are
composite,” and "atomic"” public types
from which these types are constructed
are declared in package specifications.
Client software can only reuse the
specific instances of object abstractions
contained in these packages. This
software can only indirectly access the
variables implementing reusable objects
through interfaces provided by visible
subprograms specified in the package
specifications.

G8-2: Use task declarations to specify inter-
faces to reusable objects. Use task bodies to
implement these interfaces and properties of
the objects.

This guideline is similar to guideline
G6-3. For tasks, as compared to subpro-
grams, interfaces are concerned not only with
parameter passing but also with synchroniza-
tion. While subprograms can optionally have
a separate declaration and body, tasks must
have both deciarations and bodies. Tasks and
their entries, just as subprograms, should be
treated as interfaces to reusable objects.

6. Example Ada Modules

The example Ada modules below are
taken from the design of a reusable software
repository developed at the Honeywell Com-
puter Sciences Center. This repository sup-
ports retrieval, submission, and maintenance
of categories of inventory items stored in a
database management system. Its user inter-
face is menu oriented. Specifically, the
modules below are:

(1) a package specification for the reposi-
tory Menu_Manager,

187

(2) a package body for the
Menu_Manager, and

repository

(3) a procedure subunit for one of package
Menu_Manager’s nested subprograms,
Create_Initial_Menu. The object
abstraction implemented in this package
is a menu and associated menu_stack
with operations including
Create_Initial_ Menu, Display_Menu,
and Process_Menu-Response. Package
Menu_Maager implements an "abstract
data type" by exporting menu-oriented
types and operations. It also imple-
ments an "abstract state machine” in
that it contains a nonexportable stack of
menus in its body.

In the examples, package specification
Menu-Manager and the type and procedure
declarations contained in its visible part are
directly reusable. Its private part type
declarations are indirectly reusable. Package
body Menu-Manager is indirectly reusabie as
is its nested data declarations and subpro-
grams. The subunit for procedure
Create_Initial_Menu is indirectly reusable
even though it is compiled separately.

These example modules are provided
primarily to illustrate use of our "object-
oriented" guidelines to write reusable Ada
software. The modules also illustrate other
guidelines contained in our guidebook, most
noticably, those pertaining to a standard form
for reusable software parts.

BOX)
2,08 - - . O™, d \ A -y, ¥) ‘
W'."'!".!"?ta o et it ety ,‘o."!’“ﬂ‘.“!"!!’"h.' A S O A A U U D U e A A X WIS L) !“!:"!". bttt b i e e By

SEBRBSREBRSBIEAEREEN SERRIP PEEERAELBIRAZISERLESIBERERERAB RS

EXAMPLE: MODULE 1

LE L] bt L L] FRRREESISIRS AL LSS SRS EES LS ERERRASRRREE NN

with DATABASE_INTERFACE;
package MENU_MANAGER is

-- Revision History: Created 2/20/86 P. Stachour

-- Purpose

-- Explanation: Provide data structures for and operations on
- repository menu objects.

-- Keywords: menu, menu_manager

-- Associated Documentation: Design for Honeywell Reusable Software
Repository
-~ Diagnostics:
MENU_MANAGEMENT_ERROR : exception;

-- Packages: None

-- Data Declarations:

-- Types:
type MENU is private;
type MENU_NUMBER s range 1..100;
type MENU_ITEM is range 1..55;

-- Objects: None

-- Operations:
Subprograms:
d
;‘ N procedure CREATE_INITIAL_MENU (M_NUMBER : out MENU_NUMBER);
n |:. -- Purpose:
:n,"o -- Explanation: Create initial repository menu.
:'3 ‘ -- Keywords: initial_menu, create_initial_menu.
: o -- Parameter Description:
:: ! -- M_NUMBER : Menu number associated with initial menu.
&.
[y
5 4 -- Associated Documentation: same as above.
Ia
' @
L/ ‘.-’o
o'y 1
. -:“ procedure DISPLAY_MENU (M_NUMBER : in MENU_NUMBER);
) ,\){;,
'1-.;\ -- Purpose:
‘.-‘ -- Explanation: Displays specific menu.
® -- Keywords: Display_menu.
A -- Parameter Description:
,:*2 -- M_NUMBER : Number of menu.
e
".') -- Associated Documentation : same as above

ol 188

OOOONY) :
e‘t';‘!‘o':'u‘.':...m'.‘i'!

ok 0 4 Y 54 AN MO0 QMO0 ¢
B O R I O X RIS R A S AR L R A SRR KX COOBIXCOO O

>

) h ko
iﬁf‘f‘!*h%.;._th?u.».‘-o‘,i?a MR

L)

o
s

e 3 B
el

o0’
ol

o

o

.= -
. -
a‘;“ -
-

-
-
ry

L.

-
-)
i

RS) 0 ONCISGN)
R T NN O AL

VT ARFLrY RN N TTwaw

procedure PROCESS_MENU_RESPONSE (M_NUMBER : in MENU_NUMBER;
MENU_ITEM_SELECTED : in MENU_ITEM,

EXIT : out BOOLEAN
-- Purpose:

-- Explaaation: Process response specified by menu selection.
This processing may involve a call to
Display_Menu and ACCEPT_MENU_RESPONSE and a
recursive call to PROCESS_MENU_RESPONSE.

-- Keywords: menu_response, process_menu_response.

-- Parameter Description:

-- M_NUMBER : Number of menu.
-- MENU_ITEM_SELECTED : Specific item from menu selected.
-- EXIT : Indication to exit menu system.

-- Associated Documentation: Same as above.

-- Tasks: None -- Private:

private
type MENU is ... ;

end MENU_MANAGER,;

iy

[

Pl
'
.
4

189

()

BOAG OSOBCAAHONC 3% 80,00 0 A A A
.'&t;')}t,'A‘An\’l’q“i’q‘.k:sf LN 5‘ Y l,*’:o“:"." :I’i”f: . g’lkq'_%‘;'I‘;%.L?J_égai‘fi,)?h‘?..,gp'l,

-"b"fn!n&'.t!ﬁ “»a‘.‘.»’:"i'*’&f*‘cﬁ’t?‘ﬁ!’.*’**’

AN hl [}

LX

IR

PV TR TR T T TR N TR TN TN TN NN T N BN IOV RN O TR AT T e T A OW TS T O W U O W U O T U Y O R Oroey

SEESEEBN BRI EERBERAEEN SR ARV IR RS S B RS ER R R R ARSI AR ERIP LA B NN AR B RS SRE R

EXAMPLE: MODULE 2

R IR 22 2RSS 22 R 22 b R 221 P Ead i P 2 R 2 R R 222 2222 2 2 R 24t L]]

with INVENTORY_ITEM, CATEGORY, USER, TEXT_IO;

ERRRRNPYAAA s |
!

5

'g,u with USER_STATE, BULLETIN_BOARD, COMMAND_PROCESSOR, FILE SYSTEM,

o SYSTEM_SUPPLIED_UTILITIES;

- package body MENU_MANAGER is

:'a -- Revision History: Created 02/21/86 P. Stachour

Y -- Purpose:

N -- Explanation: Provide data structures for and operations on

[N - repository menu objects

: ' -- Keywords: menu, menu_manager
’i -- Associated Documentation: Design for Honeywell Reusable

il. - Software Repository
N -- Assumptions/Resources Required: None
(-- Side Effects: None

v, -- Diagnostics: None

! -- Packages: None

: .sp 0.4v

t -- Data Declarations:

A .

" -- Types:

. type MENU_ACCESS is access MENU:

- type MENU_STACK_ELEMENT is

s record
j MENU_POINTER : MENU_ACCESS;

S MENU_FILESYS_LOCATION : STRING (1..100):

' : end record;
y - Objects:
p MENU_STACK : array (1..31) of MENU_STACK_ELEMENT; ==
': MENU_STACK_INDEX : NATURAL :=0;
" -- Operations:
o Subprograms:

procedure CREATE_INITIAL_MENU (M_NUMBER : out MENU_NUMBER)

. is separate;

- procedure DISPLAY_MENU (M_NUMBER : in MENU_NUMBER) is separate;

‘ procedure PROCESS_MENU_RESPONSE (M_NUMBER :in MENU_NUMBER;
K MENU_ITEM_SELECTED : IN MENU_ITEM,;

Y EXIT : out BOOLEAN)

4 is separate;

o :

d . == Other operations on MENU-oriented parameters.

D) .

o -- Tasks: None

-- Initialization:

! .

>, begin

‘ .

A/

)

%)

‘

; &

g 190 |
[|
” |
* |
. \

) 0 IO, . L QAN ' O OROCN QOLOQD QOO IO ¢
GO0 SO ’.:‘!‘,!‘h'.:‘»f:“‘:"f:ﬁ‘.!'nf-'-':'o‘:\'.'a'.'n‘«‘t‘.'a‘:h‘:'n':'o‘-h‘!‘n..'n‘:'t'm L R A S X RN AN OO N AN SRS SRS

Dl AL AL Y

exception :
when INVENTORY _ITEM .INVENTORY_ITEM_ERROR =|

.ﬁi wl'ien others =|

raiss MENU_MANAGEMENT_ERROR;
end MENU_MANAGER,;

¥
L

Al
10!

-
&

- o -
R

[X)

o
-

—
o

-
AT el
T a H ot
-’ "

)) ORI ORZONTULPOCFOM M X S O PO » WY v " e L RTARMILAT O NYGAGH
nteitltnGain it tain gt datinintinl adnirdatinintuialiaintagitedslatiatealalaiuintanmtelnlelel

S |

M)

W

@
£
§ SRS ERCEEA B RIS EBEREREEEEE SRS E B LS R BRI B I RE SR BB REESE AL LSS LI ERA AR RANEE RS
2 EXAMPLE: MODULE 3

? SSSPBVESESBE LRI PSR E SR AERE LR AR BAEE LS LD LSS L ESX LS REREE LS RS AS LSRR NEE S S @
g separate (MENU_MANAGER)
R, procedure CREATE_INITIAL_MENU (M_NUMBER : out MENU_NUMBER) is
:'3 : -- Revision History: Created 2/21/86 P. Stachour
3 -- Purpose:

v -- Explanation: Creates initial repository menu by reading data

W\ -- for it from a host file and placing it on the

W -- MENU_MANAGER menu stack.
w -- Keywords: INITIAL_MENU, CREATE_INITIAL_MENU
o
;:‘\‘ -- Associated Documentation: Design for Honeywell Reusabie
‘(‘ Software Repository

! -- Parameter Description:

v -- M_NUMBER : Number of menu created.

":':s: -- Assumptions/Resources Required: None
nes -- Side Effects: None
;,;' -- Diagnostics: None
A -- Packages: None

{ -- Data Declarations:
k-7 -- Types: None
i -- Objects:

i)
% _\f FILE_DESIGNATOR:FILE_SYSTEM.FILE_NAME:="DRAO([SOURCE|FILE_NAME.TXT",
N :
4 -- Operations: -
o~ -- Subprograms: None %V
o -- Tasks: None
b -- Algorithms:

begin -- CREATE_INITIAL_MENU

@)
. DA

-- read from host file, create menu, and place on MENU_S1ACK;
-- increment MENU_STACK_INDEX by 1;

-

)

-
| JAPALAorars

M_NUMBER := MENU_STACK_INDEX + 1,
exception

when others =|

x

» o i
-

end CREATE_INITIAL_MENU;

| il e
P A O

@

s
)

,i-ha
o e 8

192

b} @
-

»
-
-

> e

3
3
4

OCWTG
et

MO OOOOOOBOGOBOOLH0N AOCOROOONONONONINNE LA T0 (N30
S0 M e et Sl e I.\’l.a.l‘!.:‘:'l V000,001, T 8t 1, ittt a’-‘t"'_".‘!}?ﬂt‘tb:‘,tt‘!i Wty

"W MR ORI
U
1"‘;‘!’.',] I....&..lt‘.."“"u.'if.'le"l.. l‘.!l!q,"a?l'r

»

LN AL
e sy @ oS

v O ES

’
el

] @ v
g ¥ 3

,.-.‘

2R LR SL

1."

/]

PR X)

7. Relationship To STARS Application
Area

The STARS Application Area, in its
series of Application Systems and Reusability
Workshops, is working toward definition of a
reusability guidebook. This work is being
done by four groups: Part Taxonomy/
Requirements/Metrics, Incentives, Library,
and System/Design Integration. Our work at
Honeywell on a reusability guidebook for
RAPIER is relevant to the STARS reusability
effort in the following ways:

o Our guidebook can serve as the framework
for major sections of the Application Area
guidebook;

o Our reusability characteristics compliment

and some areas extend the
Part/Taxonomy/Requirements/Metrics
Group’s reusability model work and

specifically define reusable Ada (source code)
parts;

o Our reusability guidelines implicitly pro-
vide criteria for choosing reusable Ada
software for reuse. They support measurable
reusability characteristics and as such can and
should be the basis for reusability metrics.
This is also relevant to the
Part/Taxonomy/Requirements/Metrics
Group;

o Our reusability guidelines provide a
methodology for building reusable Ada
software which is appropriate to the
System/Design/Integration Group;

o Our reusability guidelines imply a particu-
lar cataloging scheme for libraries of reusable
software parts and acceptance criteria for
these parts before insertion in the libraries.
This is relevant to the library Group.

8. Future Work

In the upcoming year we plan to com-
plete the remaining chapters of our reusabil-
ity guidebook and refine/add to the Ada
examples it provides. Guidelines from the
guidebook will be used to construct reusable
software components for RAPIER’s software
base management system. We also plan to
circulate the guidebook for review. Feedback
we receive from RAPIER prototyping

193

AR o IS DD DRSO NN 0N DU OO, L
q",'.‘!’g ,0.’,‘; 1‘3’{"%‘!%‘!'5‘?..'!h'!%"..h‘!'l s’«‘.h‘?‘#.'.‘"g‘?’a‘?’n‘!‘l‘:'a‘!h‘!h"lo'!'A‘s'l‘!‘t‘""u lf!‘l.a.l‘:'l‘;ﬂ‘a'b'.- AR YK -'l‘.-‘l,‘-'t SR lfn

experiments and the guidebook review will
enable us to evaluate our reusability charac-
teristics and guidelines and refine them
accordingly.

9. Acknowledgements

[would like to thank a number of peo-
ple from the Honeywell Computer Sciences
Center who assisted me in preparing this
paper: Jacklyn Lipscomb for her technical
editing, Paul Stachour for the example Ada
modules appearing in Section 6, and Elaine
Frankowski for her reviews.

Bibliography

[BERGLANDS8I1] G.D. Bergland. "A Guided
Tour of Program Design Methodologies,"
IEEE Computer, Vol. 14 No. 10, October
1981, pp. 13-37.

[BOOCHS83] Grady Booch. "Object-Oriented
Design,” Tutorial on Software Design Tech-
niques. Ed. P. Freeman and A. Wasserman,
4th edition (Catalog Number EHO0205-5),
IEEE Computer Society Press, 1983.

{BOOCHS85] Grady Booch. "ACM SIGAda
Tutorial: Ada Methodoclogies,” ACM SIGAda
Meeting, July 30, 198S.

[DOD83] United States Department of
Defense. Reference Manual for the Ada
Language: ANSI/MIL-STD-1815A, United
States Department of Defense, January 1983.

[FRANKOWSKI85b] Elaine N. Frankowski,
Christine M. Anderson. "Design/Integration
Panel Report, "Proceedings of the STARS
Reusability Workshop, April 1985.

[FRANKOWSKI86a] Elaine N. Frankowski.

"Why Programs Built From Reusable
Software Should Be Single Paradigm,”
Proceedings, STARS Applications System

and Reusability Workshop, to appear (March
1986).

[HOROWITZ84] Ellis Horowitz, John B.
Munson. "An Expansive View of Reusable
Software," IEEE Transactions on Software
Engineering, Vol. SE-10, No. §, September
1984, pp. 477-487.

B0
WA N

0.9.0 00 g
‘!O.l!l".l.. thd

I
l‘ l‘ " *
1] ‘l " ‘l .f.

Te
7
P

x

x5
A

Ll

TS
4 5%
5 {Q’.-’.f_

! _;' }'5&

A
#) L

-s;

u|
t

ol v i

P
e ¥u'a"a

2

g

XA

e

F]

’:‘;.a

a‘ \'

m‘\ '\1)’\ ¥ ¥ A 3" | St h
(R LN N A h 7o Bk A B A H ,

(ISSI86] International Software Systems, Inc..
"PSDL: Prototype System Description
Language,” ISSI Technical Report, unnum-
bered, January 30, 1986.

[JONES84] T. Capers Jones. "Reusability in
Programming: A Survey of the State of the
Art," IEEE Transactions on Software
Engineering, Vol. SE-10 No. 5, September
1984, pp. 488-494.

[LANERGANS84] Robert G. Lanergan,
Charles A. Grasso. "Software Engineering
with Reusable Designs and Code,” IEEE
Transactions on Software Engineering, Vol.
SE=10D, No. 5, September 1984.

(MATSUMOTO84] Yoshihiro Matsumoto.
"Some Experiences in Promoting Reusable
Software: Presentation in Higher Abstract
Levels,” IEEE Transactions on Software
Engineering, Vol. SE-10 No. 5, September
1984, pp. 502-513.

[NEIGHBORSS84] James M. Neighbors. "The
Draco Approach to Constructing Software

194

) '.)' e-._.r.»\., r)"

from Reusable Components,” IEEE Transac-
tions on Software Engineering, Vol. SE-10
No. 5, September 1984, pp. 564-574.

[RAPIER86] RAPIER Project. “Final
Scientific Report: RAPIER Project (Contract
No. N00014-85-C-0666," Honeyweill Com-
puter Sciences Center, Golden Vailey, MN,
March 1986.

[STANDISH®4] Thomas A. Standish. "An
Essay on Software Reuse,” IEEE Transactions
on Software Engineering, Vol. SE-10 No. §,
September 1984, pp. 494-497,

[STARS83] STARS. Software Technology for
Adaptable, Reliable Systems (stars) Program

Strategy, U.S. Department of Defense, April
1983.

[STDENNIS86] Rick St. Dennis. "A Guide-
book For Writing Reusable Source Code in
Ada (R), "Honeywell Computer Sciences

Center Technical Report, Version 1.0, March
1986.

PP P T e

£

. AT W0
W WY W TOCTN PR C..Q N "0.. hhate

(STARS) WORKSHOP MARCH 24-27 1986(U) NAVAL RESEARCH LAB

9 — SOFTUARE TECHNOLOGY FOR ADAPTABLE KELIAG

@0
o
[
a
x
Q
-1
=
o
-
9
=
-
X
vl
<
3

F/G 12/5

UNCLRSSIFIED

- Ilﬁ

f

IIIIIM;

[} ¢ X ENEH ‘) X 9
. R O N I PO R R A A Y NN O WS L MPLATU L
R . . U R ER NN) . 2 2B af ¥ e
p a e Ceat ga¥ .S max

DA A i S
v,
MIRRT Y ey

o
s
=1
w

[
O
’5 I

&

]

L

’)

A 5 MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

HB.Z
= &

.

Qalddddd

re

2 flzg
a2

fles s

» v
—
.

—

l

o

)
O

l

- XD

e PR R

-

.

'

O O OO .

AN PV R INRICATNY GAGOUAOGOIOBNG _— -]
aralh WML M RIS AR 0%, ¥y W5t 48,58 By.0 g et Tt o L .
ABLACMA R L R s -'.ﬁf»’.t?e'ﬁfo'o::’*a:v’:::':::':::'l::n‘:«‘:'.‘:4‘:'"" ‘;a}'e*t‘fq’t‘.:o‘.:l'.L Nt
S OO O T OO OCOCOUOUCRONDIEN

ALTERNATIVE TECHNOLOGIES FOR

o SOFTWARE REUSABILITY

$‘ - =

;::‘n !

:.:::,4 Mark Simos

o

tj System Development Corporation

N Software Technology

:l ¢ Research & Development Division

;

::ﬁ Introduction application programs (IEEE). SDC’s Software
KRt L . , Technology Research and Development
{ Beginning with Mcllroy’s call for a gepartment is addressing the problems of
. software components industry .(McIlroy), dis- * goftware reusability with a number of
shoth cussions of software reusability have been gifferent programs, with particular focus on
' N strongly mﬂuencegl by "the compelling para- program generation technology and very
R digm of .hardware. parts". While tl:e coTpa_l" high-level application-specific languages, or
o able notion of discrete software "parts” (in ASLs. In this report. we will describe some
o the form of programs or subroutines) has of gur experiences with this technology and
s certainly had beneficial impact on the discip- jis impliications for reusability. We also touch
e, line of software engineering, it has also ,q techniques from the field of artificial intel-
s .tended to limit our conception of r.eusablhty ligence, an area that has been less discussed
g in the context of software. An important ywich regard to software reusability. The Al
& 5 message emerging from current research and ([ogic-Based Systems) department at SDC
ko in particular from the STARS Applications pas developed some innovative approaches in
L (| Area Workshops is that design for reuse is an the area of knowledge representation and
:.:. 8 essential component of a long-term strategy expert systems development that are
o for software reusability. Yet the processes of integrally connected with issues of software
e modifying, transforming or generating . o ce.

o software components are resources just as

!" reusable as the concrete software parts them- General Approach

) selves, if these "active elements” of software

development can be captured in the form of
tools such as program generation systems
(Horowitz). This reuse through regeneration
effectively fuses the design and "manufac-
ture” of software in ways that have no clear
analogies in the hardware sphere. (Note,
though, that such developments as silicon
compilers and VLSI design libraries are
beginning to provide similar flexibility in
hardware technology. This suggests that
solutions to problems now particular to
software reuse should eventually be applica-
ble across the full hardware-software spec-

Our long-term objective is to develop a
methodology for identifying and characteriz-
ing potential high-payoff domains for
software reuse, and a set of criteria for select-
ing the appropriate technology, or mix of
technologies, to capture the commonality
within these domains. We believe that cer-
tain technologies for software reuse are best-
suited to application domains with particular
characteristics. As a starting point, we are
working to define an integrating framework,
or taxonomony, that usefully discriminates
among diverse technical approaches to

- trunt.) software reuse, including:

There is currently much ongoing 1)
research on a broad range of technologies,

AN conventional techniques of reuse (such
{ .
g: from very high-level languages (VHLLs) to

as ad-hoc reuse and code copying,
language features supportive of reusa-

Py automated software parts composition sys- bility, and software libraries)
s tems, that could contribute significantly to
:.:," ’,fﬁ g the overall goal of decreasing the amount of (2) application-specific languages and appli-
a:,::: hand-written code needed to implement cation generators
T
Mg
DO
;f:"‘ 195
@
l'. {7
DO
:0":
A'::
SURP T, % 00 00N . : .
‘,‘ .' X0 A,.ﬁ?!‘#‘.'l‘. ;f.’nf: ‘, bl R o‘:ﬁ.‘th“ a.‘. - ‘h‘!lo‘!b‘_. A'S's‘!l; !fa‘. Mlt‘!’:‘h"-‘h"!'.302‘!02'?0"!0!0!'6:‘!0‘!0:‘:!3"'M&‘A!. N !&?@?‘.’e‘.‘?:sﬁct*?l!"ee‘“.gﬁzf!!sft?f0*

¥ .ﬁ.o':'s'l'-‘)l’_..':',lg

(3) knowledge-based or expert systems
(4) various hybrids of the above approaches

Today lists and arrays are standard
alternative data structures that one selects for
use based on criteria such as time/space
tradeoffs and mode of access. As alternative
reusability technologies mature, the choice of
a library of discrete software parts, an appli-
cation generator or an expert system will
similarly be made on the basis of characteris-
tics and requirements of the intended applica-
tion domain. After briefly describing our
work in these areas, we will offer some tenta-
tive conclusions about useful criteria for
evaluating the proper ’fit’ between application
domains and key technologies.

Conventional Approaches to Software
Reusability

Conventional approaches to software
reusability seek to reduce the amount of code
that must be written by hand by isolating
fragments of application software as pieces
that can be shared and reused by many
specific applications. This kind of reuse can
occur in ceveral forms, including ad-hoc
reuse of code (sometimes called "scaveng-
ing"), use of language features that are sup-
portive of software reuse, and software
libraries.

There are severe difficulties with ad-hoc
reuse (i.e., reuse of a component that was
not written with reuse in mind) that nullify
most benefits associated with true reusability.
It is hard to estimate the amount of time and
effort involved in modifying the code for a
new application, or, in fact, whether it would
be cheaper to write the code from scratch.
Subtle discrepancies between the require-
ments of the original and the retargeted
application can lead to decreased reliability or
efficiency of the final system. Nevertheless,
for some situations ad-hoc reuse may be
cost-effective, particularly when there is not
much potential for recurring applications, or
when requirements of the new application
can be modified to accomodate less flexible
features of the original application.

Libraries of standard subroutines have
achieved some success in certain application
domains, such as mathematical routines,
graphics packages, or operating system

196

t
L 9. ’0 0’0‘ ' 0“4 l. ' E“' -'. e‘ ."‘.."".

services. There are a number of common
features to the applications where this
approach has succeeded:

(1) The libraries are organized around
specific application domains.

(2) There are standard interfaces, calling
and naming conventions that effectively
make the library a uniform set of ser-
vices.

(3) The routines in the library encode
operations for which there is a known
and fairly standard algorithm. The
functionality of the routine does not
vary depending on dynamic characteris-
tics of the point of call.

There are a number of critical issues to
be faced in developing large libraries of reus-
able software coaiponents, protlems such as
configuration control quality assurance,
cataloguing and documentation. The
definition of syntactic and semantic interfaces
is onc of the main technical barriers to the
effective reuse of software (Batz83). Though
it is easy to think of software libraries as
"current” or certainly "near-term” technology,
developing libraries on a large enough scale
to really impact productivity will push the
state of the art, especially of database tech-
nology, as hard as program generation tech-
niques.

Besides the problems stemming from
inadequate technology, there are also
domains where maintaining a library of con-
crete software subroutines is not a good fit
with the requirements of the domain. One
example is simple, low-level functions that
require tailoring according to a large number
of parameters. If the options for selecting
the right version of the routine vary orthogo-
nally, one could quickly wind up with an
exponential number of components to be
stored in the library. Some form of program
generation from specifications is needed for
these applications.

Admittedly, many problems associated
with ad-hoc reuse or standard subroutine
libraries have been addressed by advanced
features of Ada®, which was designed with
reusability as a clear priority. SDC is directly
supporting the Ada movement through the
formulation of Ada-based methodologies,

'u“"a’. t'. RN d‘o 'b QUAR LX) ;!.,‘. e d %:\.u‘.f.‘ R &‘h " t“ i"c

®

- .-'-"'o'o‘b"-‘—

Py
Y ’:Jw‘.
.

-%U

“ »
0 ‘.‘:&;

3 Y
- .

L1 af Wl M

= .‘≶'{‘:' 4

P N
ST

oy i 2

A 0.5-‘ o.'--
a2
Crgly g

08

I

2

e

@ S L e
L R A

£E

Y S
DA NS

.;.;.IS; -".{1 *

studies in reusable Ada components,
development of Ada tools, automatic genera-
tion of Ada software from a high-level
specification and active participation in the
Ada community.

The use of Ada features such as pack-
ages, generics, strong typing, default parame-
ters, and tasking to support reusability have
been described extensively elsewhere. These
features of Ada have significantly extended
the domains in which reuse of static software
components will be viable. It is interesting to
note, for example, that features such as gen-
eric program units have shifted functionality
onto the Ada compiler that previously would
have required program generation techniques.
However, because Ada has been standard-
ized, any further extensions to these facilities
for generating Ada code at compile time can-
not be part of the Ada compiler per se.

Application-Specific Very
Languages

High-Level

Application-specific languages (very
high level languages that are designed for a
particular application area) offer a useful pro-
grammatic interface to reusable software
modules. Such a language can act as a
tailored query language for accessing a reposi-
tory of reusable algorithms within a narrow
domain, as an automated parts-composition
system, linking together static routines from
a library, or as a parts-generation system,
creating instances of a given subroutine
optimized to the requirements of each
instance of use. Thus it can provide both the
flexibility and generality of a highly
parameterized set of routines, and the
efficiency of tailored code.

ASLs will have highest pay-off in nar-
rowly focused applications areas where many
slightly customized versions of a single basic
program are created from large, well-
understood libraries of basic functions
(Standish). ASLs permit the direct embed-
ding of application-specific methodology in
the generation system. ASLs can be easier
for both programmers and computer-naive
application specialists to use than general-
purpose high-level languages, because they
allow tasks to be specified in a non-
procedural language close to the terminology
of the application domain. In addition, they

allow typical sequences of actions to be
specified at a higher level. Arguments that
must be provided explicitly in a call to a
library subroutine may be taken implicitly
from context in an ASL specification. Also,
an ASL processor can perform more exten-
sive static checks for semantic validation than
is possible with embedded subroutine calls.
Thus, an AS! is a particularly useful inter-
face to a set of services providing access to a
persistent data structure such as a database,
where there are strict integrity constraints on
allowable sequences of operations. The syn-
tax of the ASL can disallow invalid sequences
of operations that would have to be defected
at run-time if called as a sequence of subrou-
tine calls from a general-purpose program-
ming language.

We believe ASLs are a more feasible
near-term alternative than very high-level
general-purpose specification languages
(Cheatham). Because ASLs use application
terminology, they are less abstract, hence
easier to use and maintain than formal or
algebraic specifications.

An ASL is useful by virtue of its close
connection with domain terminology of the
target domain, its narrow focus, its non-
procedural level of specification, and the
guaranteed correctness of its transformation.
Languages of this sort can serve as the input
specification to two kinds of generation sys-
tems:

(1) a highly-parameterized generic applica-
tion program, which simuiates the
behavior of many special-purpose appli-
cations by performing sophisticated
run-time decision-making;

(2) an application generator, which
transforms the specification into a
tailored application program in a lower-
level programming language.

*Ada is a registered trademark of the
U.S. Government. (AJPO)

In practice, the two options are similar,
except that the former embeds the generation
expertise at compile time, the latter chooses
the proper actions at run-time. A compiled
implementation, or application generator,
might be more suitable for stable applications
that will be run with exactly the same

197

r

C X Ot %% DA OO e RO S R Y 0 (T,) \
‘:.I.Jl,o.'i..t..‘,o'lfq “.1"5. ‘2‘"’0 M X q‘!‘ﬂ?’l".‘u""’s 1‘:‘&’:’5 .’l‘.“'!‘t'a.."n (L0 c“’d"“ AN :" NN t“ s‘.‘o‘!‘;‘th "A Tttt :‘S”- .‘!"!'Ql‘.,“l!"lf. 0

L

B

K ' parameters a number of times. Also, since SSAGS require less interactive debugging and

.$. the output of an application generator need can be maintained from single, reusable

:.,n' not be a program in the ordinary sense, appli- specifications. SSAGS has successfully been M’-

cation generators can be useful in generating
multiple output files that must be kept syn-
chronized from a single high-level
specification. An interpreted implementation
is more appropriate for interactive develop-
ment of specifications and/ad-hoc or one-
time usages of the generation system. We
refer to both highly parameterized applica-
tions and application generators as
application-specific languages (ASLs),
because the use of high-level terminology
from the application domain is a common
strategy of both approaches.

used to produce several transiators, including
an Ada-to-Diana translation system and a
configuration ASL for Burroughs XES50 sys-
tems. We are currently using SSAGS to
implement an ASL for message format vali-
dation in the message processing domain. In
addition, . the SSAGS translator itself is
specified in and generated by SSAGS. We
believe that use of a translator generator sys-
tem like SSAGS, together with the strategy
of defining small languages for narrowly
defined domains is a key to the cost-effective
implementation of ASLs for reusability.

... A Meta-Generator for ASL Systems

Expert Systems

For many DoD applications, the

o development of application-specific languages In the context of software reusability,
SN is technologically feasible, but the develop- domain analysis usually involves examining a
Y ment cost has seemed prohibitive. These collection of application programs addressing
- development costs are steadily decreasing, a similar class of problems (e.g., air traffic
.,,K however, as compiler specification and gen- control or business systems) in order to iden-
- eration techniques approach the stage where tify potential reusable software components
§e entire tools in the language-processing or algorithms (CAMP). It may seem out of
! -.j domain can be automatically generated from place to discuss expert systems technology in
) their specifications. SDC has developed a this context. Typically, expert systems auto-
: generation system for tool-building known as mate what was previously a largely human ‘-"Td
3 the Syntax and Semantic Analysis and Gen- jactivity; domain knowledge is gleaned from
2 eration System (SSAGS), a Ada-based gen- human experts and often can’t be reduced to

-

eraticn system based on attribute grammars
(Knuth). Integrated with a standard lexical
analyser generator and parser generator,
SSAGS accepts and validates an attribute
grammar specification of the semantics of a

deterministic algorithms. Hence, there is less
likely to be a body of conventional programs
supporting an application domain being con-
sidered for expert system support.

Q o, X

1
'\j language, and automatically generates a But the presence of conventional appli-
3 ;‘. semantic evaluator for the specified language. cations is not a dependable indicator of
"'-j . whether an expert system approach is most
s‘ .SSAGS prqvxdes many advantages for appropriate for a domain. A currently unau-
the implementation Of ASLS- The use ,°f tomated application area may be quite amen-
& attribute grammars within SSAGS permits apje 10 conventional software techniques (or
oo, the specification of language semantics in @ may not be worth automating at all). Con-
K very clear - and hence less error-prone - versely, for some problem domains currently
}\-j fashion. In. addition, SSAGS is based on supported by conventional software a
N ordered attribute grammars (Kastens), a re- significant increase in software reuse may not
1N, stricted class of attribute grammars that allow be feasible through a parts-library or program
® a language specifiction to be statistically geperation approach alone. Knowledge-based

checked for valid semantics. To take full
advantage of this static validation, SSAGS
functions as an application generatcr in the
sense described above, unlike some interac-
tive attribute-grammar based systems such as
the Cornell Program Synthesizer (Teitel-
baum81). Thus translators implemented in

techniques and heuristics may be the level at
which commonality can best be factored into
the domain.

e X
R LA,

v e
4

For example, if choice of the appropri-
ate algorithm for a given problem situation
requires extensive semaitic Knowlcdge of the Py

Nl 3

Ny

- "
e JUIPLIR

198

A ML AT AT A < MM 3 N AT - W A KN 3 NI s SO)
.t .1!.20 A .l,‘. .l T e D .0!‘.!‘.’4‘_..0. Mt N .e..”.';l, 4'.40 X ,.!l,.!b.ﬂ), A1 Qé‘g’,.’t'-'t':ii AN s l‘.\‘»'l”’i‘u l“;‘« -‘l’! LR Q’-.l‘! NN, ‘4,0'1‘.!'.\.

, ~ application domain, knowledge representation
techniques may be the most suitable way of systems products, and the sales personnel
encoding this knowledge. In another case, who use the automated configurator applica-
; the performance needs of the domain may be tion to prepare complete and accurage
“ stringent enough that subroutines, to be configurations for customers. The same

knowledge bases about various Burroughs

i‘.-‘%-‘*
e s "1 N 3

usabie, must be optimized for the point of
use. In such domains, knowledge-based pro-
gram synthesis or program transformations
may be a prerequisite to effective use of
software parts. Note that these situations
might utilize knowledge-based technology in

semantic network knowledge representation
system developed by SDC, has several
features that help to partition semantic and
domain-specific knowledge-- the model of the
domain-- from the logic of applications mak-
ing procedural use of that knowledge. SDC
has used KNET to implement a large expert

knowledge base used by the configurator
application could potentially be used for
diverse applications, including design revi-
sion, manufacturing scheduling, system pric-
ing and maintenance. Though there may be
little procedural commonality between the

{s.' two very different ways. various applications, we gain reusability by
,l consolidating common domain knowledge in
1< (1) Artificial intelligence techniques and .5 jndependent structure. While this is not
e languages may be directly used within gofiware reuse in a strict sense, it is an
& the system being developed. effective reuse of knowledge that would more
((2) Artificial intelligence techniques may be traditionally be embedqed in application
v used in combination with library access, softw:varg (z;nd hence rewritten anew for each
5,:: prograrq‘generation, parts compos'ition application).
": mf facilitate reuse of conventional This separation also allows different
.;, software. domain experts to model individual parts of
W the system independently. Here the domain
d In either case, expert systems provide model turns out to share some of the advan-

. reusability in ways that are not available with tages we associate with ASLs: because the
j~s other techniques. (We will avoid discussion domain model is defined in non-procedural
;‘_\: of functional or logic programming language terms, it is easier for the model to be
o features that support reuse, since these independently maintained or created by appli-
o advantages would be counfined to direct Al cation specialists who are not expert systems
applications.) developers.
ar d "E 4

; Knowledge-based technique provide a Just as many applications can use one

5 means of isolating domain commonality at a knowledge base, an application can be written
i more abstract level than that of concrete sub- to work off multiple knowledge bases. For
s routines, or even standard algorithms and example, the functionality of the Burroughs
23 procedures. This allows, at least potentially, configurator can be extended without modify-
~). a separation of procedural from declarative ing the application, by creating a model of a
Z‘_ knowledge which is difficult to achieve in new system component. This is closer to our
& conventional programming languages. It has intuitive notion of software reuse, since the
s also been difficult to achieve this separati.on application can be adapted in a well managed
o in many "traditional” expert systems, which way to different situations of use.

X are implemented as large, unstructured sets

of rules combining conditions and actions in Extending Domain Analysis for Technology

,:30 a single framework. KNET (Freeman83), a Gelection

Our work in both program generation
technology and knowledge-based systems has
revealed a number of similarities in the
domain analysis process for these respective
areas, as well as similarities to domain
analysis performed for the development of

PN T

X system for the automatic configuration of more conventional software parts technology
: 3 Burroughs computer equipment (Free- as well (CAMP). This suggest that selection
3 man85). The system is intended to support of appropriate technology for an application
pr) both the product experts (the plant domain is best done in parallel with domain
:j ~, engineers), who create and modify the analysis. and that the domain analysis process
W
)
4
X
i
§

199

. e PN NN M

(n " NN A T3, t 3 T TR RN MRS
B S B A KA

N
b
-

-

" T o ", e T e
S
i F af Wb

Yok \--
X

o
5
LA LTS,

2 1

A5
)

T

T

)
%

:m.r-v
K7

9
4

B ats
e -

should be refined and extended to produce
information relevant to this task.

A basic model for assessing the poten-
tial benefit of designing for reuse must pro-
vide a trade-off of the cost of the initial
implementation, the projected number of
future usages for the function, the average
cost of each adaptation for reuse, and the
cost of re-implementing rather than reusing
for these instances. Domain analysis to sup-
port technology assessment must consider
many additional factors. The domain analyst
must look for commonality at different levels
of abstractions and different phases of the
software life cycle, and must look for com-
mon development activities and transforma-
tions as well as common static components.
The following list is an initial set of questions
that might be part of this process.

(1) For a typical application program, what
proportion of the processing consists of
functions from the target domain? If
applications tend to be predominantly
invocations of doman functions, (e.g.,
database querying and reporting), an
ASL might be appropriate. If domain
functions are sparsely distributed, a
library might be better. If the relative
proportions of reuse ranges widely
within the applications, a layered
approach offering both direct interface
to the library routines and an ASL shell
may be indicated. (For example, most
database systems provide both an
embedded programmatic interface to
database services and an independent
query language, which may be inter-
preted or compiled.)

(2) For a given category of reusable parts,
how large would the necessary library of
parts be? Would sophisticated catalogu-
ing or pattern-matching tools be
required to find the right routine in the
library? If the size or complexity of the
library passes a certain threshold, usage
will drop because of retrieval effort. In
this situation, it might be better to par-
tition the library into smaller packages,
or encapsulate some sets of routines
with an automated part selection
mechanism accessed by an ASL.

(3) What is the expected distribution of
usage along the various dimensions of

200

component variation (time/space,
parameterization, birding mechanism)?
For example, are components accessed
as procedures, functions, tasks, or
stand-alone programs, or a mix of
these? If usage patterns are clustered
along one axis, generation techniques
may be appropriate. If usage needs
vary widely, creation as needed and
storage in the library might make most
sense.

(4) Are the parameter choices for a rcutine
"flat" or "tree-structured"? A subrou-
tine requires a fixed number of parame-
ters (though defaults can be provided as
in Ada). An ASL has more flexibility
over parameter choices, but will still
require the inputs in a batch mode. An
expert system application could prompt
intelligently and constrain choices
further in the process as a result of pre-
vious decisions.

(5) How deterministic are the functions
common to the domain? Are they
definable directly as functions in
software, deterministic algorithms that
can be incorporated in a generation sys-
tem, or a set of rules, procedures and
heuristics, for which an expert system
might be an appropriate impiementa-
tion?

(6) How critical is the efficiency of the final -

code? If performance is not critical
(such as in prototyping environment)
conventional parts may be sufficient. If
performance constraints are high, but
parameterization does not vary widely,
it may still be feasible to store discrete
optimized parts, but more ancillary
descriptions of optimization priorities
and benchmarks will need to be main-
tained along with the software part. If
both performance and flexibility are
required, program generation tech-
niques may be required to achieve ade-
quate reuse.

(7) How modifiable are the system require-
ments? Is the customer willing to
change specifications to suit existing
characteristics? If so, conventional
reuse techniques will be more applica-
ble.

This list is by no means a complete set
of criteria for evaluation; nor are the

& DALGOND O 0 A AAAACAONOOSOE G0 RIENOAD (NSO A\ RO OUGQOUANGOUE
e et I G e g L L e e R Bt e R e ettt

LA

v"—'
Y
¥
O
DL
OO0
’l’l?‘llf

L/
.Qnel!

LRSS

y 475,

interpretations of the criteria iron-clad. The
eventual goal would be a set of guidelines
that a software manager could apply when
considering the (re)automation of a specific
domain, in order to choose the appropriate
technology.

Hybridizations of technologies

Near-term (application-specific) techno-

logies for software reuse, whether software -

libraries or ASLs, will cover only a small pro-
portion of the large-scale, real-time applica-
tions of most concern, because these systems
represent the intersection of multiple applica-
tion domains (in the restricted sense
described above), at disparate levels of for-
malization and standardization.

This does not mean that technologies
for software reusability can have only an
incremental impact on large system develop-
ment in the near term. To achieve an impact
on these systems adequate to the productivity
goals of the STARS program, it is necessary
to support a mix of horizontal and vertical
domains; that is, both domains defined in
terms of application areas in the real world
(communications, air traffic control, etc.),
and those that cut across traditional applica-
tion boundaries, such as mathematical sub-
routines, manipulation of data structures, or
support of software development activities.
This strategy plays a key role in our plans to
incorporate ASLs as an integral component of
SDC’s Common Software Environment
(SDC-CSE) (SDC85). We pian to define
ASLs tailored to several "axes” within the
environment: (1) project roles associated with
software life cycle phases (programmer,
designer, requirements analyst) and skill lev-
els; (2) architectural features of the environ-
ment (such as database interaction, project
communication, or configuration manage-
ment); and (3) additional ASLs supporting
the specific application area of the project.

Because different domains are best
suited for particular technical approaches, this
mix of domains must be supported by pro-
moting alternative technologies with the most
potential for near-term cost-effectiveness,
and developing techniques for the hybridiza-
tion of these technologies wherever possible.
For example, application generators have
been most successfully used for areas like

201

LYY D

database management, where typical pro-
grams do little but access the database and
present the data. They are currently less
suitable for domains where generated func-
tionality is interspersed with arbitrary compu-
tation. Techniques for infiltrating code pro-
duced by application generators with hand-
written code (or vice versa) would greatly
expand the scope of use for these tools
(Volkenburgh). Similarly, libraries of reus-
able software should be designed to accom-
modate the inclusion of hand-written com-
ponents and automatically generated or
transformed components in a uniform (and,
to some degree, caller-transparent) manner.

The integration of specification and
generation techniques with reusable software
parts could facilitate effective reuse of these
parts. When a software component library
achieves a sufficient complexity one or more
ASLs could be defined as a natural and
efficient user interface to the library. The
selection of software parts is automatically
performed by the generation system, which
does so on the basis of its built-in knowledge
of the syntax and semantics of the software
parts. Usages of the reusable software parts
are linked by code automatically generated
from the specification. This method guaran-
tees correct and effective usage of the reus-
able parts. By allowing both access to the
ASL interface and direct access to the under-
lying library of routines, maximum flexibility
will be available when required; the ASL can
be cleaner, since it will not have to accom-
modate as many pathological 'special cases’.

Finally, we see great potential for the
application of knowledge-based techniques to
parts composition, generation, catalogueing
and tailoring systems. We believe the
appropriateness of this technique will increase
as more expertise is gained with conventional
parts management systems technology.

General Issues

Advancing our understanding of
appropriate matching of reuse technology to
application domains is not going to solve all
the difficult issues involved in reusing
software. Designing for reuse is inherently
more complex than writing special-purpose
applications, because one sets out to solve a
class of problems rather than one specific

k)

(R0 148 8,7 1gV 1 (] (XMWY LA DEOSNSE RO SO OSSNSO DN GG ON OB 000G
B A e R T R R S D T R D K R RO KU

‘t‘t"«.-“ A AAT

. l!Q! i

AhAT

problem. Thus, we should anticipate that
each technology will present its own chal-
lenges in design. But also, certain problems
that have been encountered in software com-
ponents technology may reappear at a
different level with application generators or
expert systems. In the interest of a realistic
perspective technologies to solve, we offer a
few issues that appear common to all the
approaches described above.

Application Specificity

Software reusability becomes more
feasible, regardless of the technology
involved, in direct proportion to the

software’s degree of specificity to a particular
application domain. This is confirmed by the
domains in which subroutine libraries have
been most successful, such as libraries of
mathematics, graphics, or operating system
routines. The critical problems in library
configuration management, cataloguing and
retrieval quickly push the state of the art
when the scope or complexity of the library
gets too large. This is also a key to the strat-
egy of very high-level application-specific
languages in contrast to attempts to define
general-purpose high-level specification
languages. By confining !anguage scope to
small, clearly defined domains, it is possible
for ASL processors to generate efficient code
of - production quality. Finally, this
observation is consistent with the general
thrust in the expert systems area toward con-
centration on domain-specific expertise rather
than general knowiedge or problem-solving.

Separation of Volatile from Stable Informa-
tion

One limiting factor to capturing com-
monality in a domain is the relative degree of
volatility, or frequency of change, of the
information in the domain. For example,
one does not want to embed monthly pricing
information in a program generation system
that would have to be recompiled with each
price shift. Though the rules used in
knowledge-based systems might appear to
support this sort of change better than a com-
pilation system, it would appear that a
knowledge-based application of any size and
longevity also needs an auxiliary mechanism
to handle rapidly changing knowledge. The

R AT .
SR ANN S AR NN MR XNX)

q ()
.'0?‘!13"0‘.1,'0&90

Al department at SDC has been involved
with work on linking knowledge bases with
loosely coupled conventional databases to
achieve the necessary separation of volatile,
time-dependent informaticn from more
stable domain-dependent knowledge. Viewed
in this way, the database in effect functions
as an extremely flexible and maintainable sys-
tem for passing 2 large number of parameters
to the system. A program generation system
or a software parts composition system could
make use of the same sort of faciltity.

Modularity

The need for modularity in large sys-
tems is not allayed by the introduction of
ASLs, component libraries or expert systems.
Instead, it reasserts itself at new levels of
abstraction. Libraries should be partitioned
into intuitively cohesive collections of ser-
vices, modularized according to the same
principles of good software engineering that
are helping to make hand-written software
tractable. (This conforms with the state of
practice in the standard C libraries of UNIX"*,
or. the intention of the package mechanism in
Ada.)

We have advocated the creation of
small narrowly defined ASLs rather than new
large, general-purpose languages (since our
purpose is not to reinvent Ada). In a
environment where production of special-
purpose languages for software development
has become economically justifiable, we must
begin to modularize the languages in our
environment with the same care that we
create reusable subroutines. By keeping
ASLs small, cohesive and single-function, we
increase the ways in which these languages
can be linked together to form new tools.
We are currently investigating the theoretical
problems in specifying shareable sublanguage
ASLs that can be reused in different con-
texts. For example, an ASL for string pat-
tern matching might be used within many
other ASLs. We should be able to define it
as a separate language and invoke it as such
from other language specifications. Finally,
modularity in knowledge bases is a key to the
tractability of large expert systems, as we
have seen. ’

One implication of this recurring modu-
larity is that components management will be

202

i

0 \ 0 UMK TN
D R LA O R R TS MR N

"m“‘q

f,

(AX]
0"11‘4&‘«."’

-

\©;

‘,s‘f\

2
‘J

%

needed at all icvels in a hybrid technology
environment. ASLs will need to be main-
tained, catalogued and reused just as we
currently propose for subroutines. Further
down the pike, knowledge bases themselves
might reside in libraries as well.

Maturity of Domain Knowledge

The technology suitable to an applica-
tion domain depends closely on the relative
maturity and stability of the domain, and the
presence of a firm basis for standardization
and the consolidation of expertise. This is
borne out of examples such as the
widespread use of application generators for
well-understood domains such as business
software, and the successful libraries of stan-
dard routines. This implies that efforts to
introduce software libraries or application
generators in highly unstable or innovation-
intensive software development environ-
ments may constitute a premature introduc-
tion of reuse technology. It may resuit in
simple wasted effort or premature, hence
ineffectual standardization. Instead, we advo-
cate the incremental and evolutionary
approach of initic'ly tackling narrowly

‘defined, highly constrained and well-

understood sub-domains within such applica-
tion areas. In this phase, library support or
ASL support might be equally feasible
depending on the profile of the domain. As
our knowledge of an application domain
matures, we will evoive naturally through a
progression of technologies to support reuse,
beginning with ad-hoc reuse, coatinuing
through development of standard libraries of
routines for common functions, then
automating the composition of these func-
tions through higher-level application genera-
tors, to eventual knowledge-based support.
This corresponds with the evolution in data-
base technology, which may serve as the clas-
sic example (to date) of a reuse-intensive
software domain.

Conclusion

The taxonomy of reusability technolo-
gies and criteria for domain presented here
are initial suggestions. Much work needs to
be done to make this framework into a
comprehensive methodology that can be of
general use within the indistry, though there
is already a large body of experience to guide

203

Y
"t.l

this work. This knowledge should be consol-
idated and codified, through industry-wide
forums for discussion such as the STARS
Applications Area Workshop. Once some
consensus has been reached on the dependa-
bility of these criteria, the proposed STARS
Reusability Guidebook would be an excellent
avenue for making these guidelines available
to the software industry as a whole.

*UNIX is a registered trademark of AT&T
Bell Laboratories.

References

(Batz83) Batz, J.C., Cohen, P.M., Redwine,
S.T., Rice, J.R., "The Application-Specific
Task Area", IEEE Computer, 16:11, pp. 78-
85, November 1983.

(CAMP) Anderson, C.M., McNicholl, D.G.,
"Contract FO 8635-84-C-0280, Common Ada
Missile Parkages (CAMP):Preliminary
Technical Report, Vol. 1", in STARS
Workshop Proceedings, April 1985.

(Cheatham) Cheatham, T.E., "Reusability
through Program Transformations”, IEEE
Trans. on Software Engineering, Special Issue
on Software Reusability, SE-10:5, September
1984.

(Freeman83) Freeman, M.W., Hirschman,
L., McKay, D.P., Miller, F.L., Sidhu, D.P.,
"Logic Programming Applied to Knowledge-
Based Systems, Modelling, and Simulation”,
Proceedings of the Conference on Artificial
Intelligence, Oakland University, April 1983,
pp. 177-193.

(Freeman85) Freeman, M.W., "Case Study
of the BEACON Project: The Burroughs
Browser/Editor and Automated
Configurator”, IEEE Televido Symposium on
Expert Systems in Prolog, Dec. 9, 1985.

(Horowitz) Horowitz, E., Munson, J.B., "An
Expansive View of Reusable Software", [EEE
Trans. on Software Engineering, Special Issue
on Software Reusability, SE-10L5, September
1984, pp. 477-487.

(IEEE) IEEE Trans on Software Engineering,
Special Issue on Software Reusability, SE-
10:5, September 1984,

(Kastens) Kastens, U., "Ordered Attribute
Grammars", Acta Informatica, Vol. 13, 1980,
pp. 229-256.

q
\t‘n’r‘n'

P D6 R R

——a w
()

& - ‘ '
w.u.&\?. .rj‘r

.

A A

b il
‘n

- an w4
A

%

1
[]

§

(Knuth) Knuth, D., "Semantics of Context-
Free Languages”, Math. Systems Theory, 5:1,
1971, pp. 127-145.

(Mcllroy) Mcliroy, M.D., "Mass-produced
Software Components”, Software Engineering
Concepts and Techniques, 1968 NATO Conf.
Software Eng., J.M. Buxton, P. Naur, and B.
Randell, Eds. 1976, pp. 83-98.

(SDC85) T. Payton et. al., Architectural
Description of the SDC Common Software
Environment (SDC-CSE), Under contract to
Naval Air Development Center, Warminster,
PA. (CDRL A002, Contract No. N62269-85-
C-0485) January, 1986.

204

(Standish) Standish, T.A., "An Essay on
Software Reuse", IEEE Trans. on Software
Engineering, Special Issue on Software Reu-
sability, SE-10:5, September 1984, pp. 494-
497.

(Teitelbaum81) Teitelbaum, T., Reps, T..
"The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment",
CACM, 24:9, 1981, pp. 563-573.

(Volkenburgh) Volkenburgh, G.V., "Infor-
mation Package for Workshop on Reusable
Components of Application Software",
STARS Workshop Proceedings, April 1985.

A

Q NPT o RN R Y D OHOEOADEISONON0
R e, R e e A T A e g e

0 OB 0000 O
!tt‘!l:‘!!:‘!ﬂ:‘.ﬁ‘@n':'o‘!l:‘e'z‘!'A‘J"?h‘!‘o‘!ﬂ‘!h‘:'n‘,'l‘!’n‘!ﬁ‘!ﬁ"h’

I
-,
3

3 Creating
Reusable Ada®
Software

Ed Berard

X
/ *
LAAALTA

4 o

)\J Pd

£k s Y,

oA P8
PN L TN

Lt ¥
a3
P

y
.

1] PN l' ('
.-_'f.‘ ;e

-
£
[

&, "‘
P 7/

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)

A4

.ﬂq._ .
AW, WS

P4

A

g
5 A

LI A Rl ¥

[

PPl P .
;o .""x'xf‘.vv"a:‘.ﬂ {®

&

©1986 EVB Software Engineering, Inc.

205

e - T 1 (AR, Tt » j s T A TP ; . O ; % (3
";:‘5- ot .0-'?0.".::‘5:‘!" TR TR .i':fi,aﬁ’:!l?!fﬂ!:!'?:eﬁ?:!l?ul Nt .'::i?v,l.n.lh.l. .u"!-.'??-!!?«',-.:" I o> ' ,IO"?Q\»'-?O%‘.!'& S

. i3
¥
N
"
L

T

PRl S ¥ e]

- L g

EE Syl hy

Introduction

The primary objective of this set of notes is to make the audience aware of some of the
more important issues relating to the creation of reusable Ada software.Specifically, these
notes are designed to touch upon the “nuts and bolts” issues. Since the time allotted for
presentation is less than one day, the material is intentionally brief. It is assumed that the
audience has at least a reading knowledge of the Ada programming language, and has
developed at least one piece of serious software.

Some of the concepts contained in these notes were originally developed by Grady Booch
(Rational, Inc.), and will be amplified in his soon to be published book (Software
Components With Ada, Benjamin/Cummings). Specifically, the terminology associated
with reusable modules and the concept of subsystems were first described by Mr. Booch in
previous tutorials. While there is no formal working arrangement between Mr. Booch and

EVB Software Engineering, Inc., EVB recognizes and appreciates the pioneering work
done by Mr. Booch.

©1986 E.B Software Engineering, Inc.

206

@

- O p A %2 7 5 2 0 " \ A | XSO
l !:" ":’;‘. :"'o‘q ity 0".”5‘0 o4 A‘. SAAN ’ :‘(‘ o 1‘2 “f“) l'-‘1‘:‘!‘:‘""!':.“..!.’ |':‘q'!'»",‘n~xal.’n'..';‘!'n'!':“.'-.'. ottt
- - . & W, " Y * » N

TR TR R A a g gs gt Aty AULAS AN (a8 22l @ IR TP UROTU T PO SR W O P R v T R e

2
&

L @ If Hardware

People Thought
Like Software
People

. e “There are some unused ‘op
codes’ in this CPU for this
 specific application. Why don't
. we remove the extra ones?”

) e “There are 613 unused bytes of
RAM for this application. Let's
2 redesign the hardware so that
we can remove the extra

K memory?”’

% o« “Using an ‘off-the-shelf’ CPU

is for wimps. Let's design our
own application-specific CPU
for this application. The same
goes for integrated circuits in

general.”

- -

...\‘.\‘l

- g% ‘A
:":‘.“'."'." .J . .« ’I PRI .‘IIK"‘ L/ .‘."a ')u o "a <

©1986 EVB Software Engineering, Inc.

AR

207

L]
8
3

)
¥,

LA PR PR S PR PY Y B Sy)
W -._,\,\’.-.,MJ,JJ.

-n “"‘

b
O I

LTI

;' wmimen

Definitions

Reusability: the extent to

which a module can be used in
multiple applications. (This
definition skirts the issue of
how much change, if any,
might be required in the
module’s code.)

Portability: The ease with
which software can be
transferred from one computer

system or environment to
another.

Modifiability: The ease with
which a piece of software may

be changed to suit a specific
application.

©1986 EVB Software Engineering, Inc.

0 0
NN ,“h“""t“"‘l

208

. ¥ N Q A0 0 0. 0)) 0 1 81 g ARSI SO TN
‘;“."‘..E“u:"i!‘,‘n!l',c:‘.'ot“::l‘ltlfv?l‘atﬁ'q!l‘.’,t‘ufl?p‘.I"o‘.l‘.’l’.fl’hl?:e#;fl"y,l.c,‘l‘r'.i'a?l'.fl‘.!C'.!n‘di"‘b':’i'qfl’y’l‘pfi’lft'n’_l'r"‘;.‘i’»‘l’n’.t‘f&‘e.("o‘,h'

-
]
-
XTI

ST

'. -
o

Definitions

(Continued)

o
A A
X

L X
@ o mm o

L4
-

i

A
> -k
Yy’

b :c" "
X 5EE

o Maintainability: The ease
i with which maintenance of a
R functional unit can be
performed in accordance with
T prescribed requirements.

—y

o Reliobility: The probability
- that software will not cause the
15 failure of a system for a

o specified time under specified
2 conditions.

e o Abstractiomn: A view of a

5 problem that extracts the

o essential information relevant
X to a particular purpose and

o ignores the remainder of the
PR information.

o j@
WS ©1986 EVB Software Engineering, Inc.

e
L%t
" 209

,
[}

ERVERC A ARG X SRR OAOSE)AANA0 BIAATA ’ W80 SO NI I ONEIENRENTE
«"t"“‘."‘z"’é"‘-"’?‘ .:", -"“s‘fﬂ’""d’“”‘~’!‘t',"q""°.':"":'t'-!."." PR AN NN ‘”*?a“:?"ﬂa"c-!"'-’fs"-*qf:s"".! DABARKIASCSARMENLR G

nnnnnnnnnn

- o o
e T,

T
-

[x5
,Q

o

3

-g;s:]))
Definitions

B (Continued)

i |

% Functional Abstraction: A

3 view of a problem that permits

% the user to know precisely

i about the input-output

i specification while hiding the

" underlying implementation of

. - the function itself. (This

! permits reusability of the

i Sunction for varying data of a &
i fixed type.)

P » Data Abstraction: A view of

a problem that hides both the
underlying structure of the

r input-output data and the

b underlying functionality of a

& module.The user may

o occasionally know some of the

0 details of the underlying

3 algorithms used in the module.

; ®
::' ©1986 EVB Software Engineering, Inc.

210

USRI IO X AU IO T aCI N AN TIET,
”.’J‘.’!’l‘l‘hfi',‘.ll‘:“l‘;,.l"a"ﬁ'&tl’tfngll.,.b' e NN T e A e

. 7

X

N e wR - Rl T T VORI N T e T W T PO I T W 7O W s -

Definitions

b (Continued)

~* [Process Abstractiomn:

:% Similar to data abstraction, but
g ~ differs in having an

3 independent executing thread
R of control that determines the
(3 order in which operations

e - become available for execution
i (includes concurrent

3 processes).

g o Usability: The ease with

b which a piece of software may
i be used for a specific
5 application.

e ©1986 EVB Software Engineering, Inc.

o 211

Y 008 80 OGN TOUCAR ORI
' ! S AR e ‘5‘1’3,:.‘1:1"!’4 OO L

©1986 EVB Software Engineering, Inc.

Reusability
Axioms

Reusability is not an absolute
(or discrete) concept.

The Ada programming language
provides reusability concepts
which are fundamentally
different from those in most
other commonly used
programming languages.

Reusability is increased when
software engineers achieve the
goals of software engineering
by adhering to the principles of
software engineering.

Management must encourage
the reuse of software, and
software engineers must both
design and use reusable
software.

212

L Reusability
Axioms
s (Continued)

i e Reusable software must be
P promulgated within an

b organization.

3

: Reusability must be defined,
° - measured, recorded, and
increased.

« Software engineers must avoid
language/implementation
e tricks.

P ~« Software engineers must know
i what factors affect reusability.

« Software engineers must know
bR what factors affect portability.

R Reusability and portability are
- | enhanced when modules are
g Sunctionally cohesive and

00 loosely coupled, i.e., they are
i o highly independent.

o ©1986 EVB Software Engineering, Inc.

f 213

Reusab"ity
Axioms
(Continued)

B Reusability and portability are
e enhanced when modules have
v | well-defined interfaces.

K » Software engineers must know
g - what is general and what is
specific to an application. -

gl » Robust modules (created
through defensive

i programming) are more
& reusable than non-robust
modules.

s o Practice conceptual integrity.

e There are times when
35 reusability is not important.

" ©1986 EVB Software Engineering, Inc.

214

S e .
rf’o“: ..
- .- ﬂ'—

2@

Sz

.-‘»:
-

What Can Be
i Reused?

i e Code Fragments
i e Modules (components)

e « Subsystems (Rational/Booch
i definition)

i Tools
3 Designs

v 4
K *:ER'

REN ©1986 EVB Software Engineering, Inc.

KW 2 l 5

. i=b'g|i"l, ERIIC TR T AL
at ‘113.1' W, ‘g‘?,‘.f “'f“‘\"».htv ;vz"v(‘,‘g"‘\\’eu

LIRS HISTIRICN
ATt

--
X
tece
“
T

General Ada
Coding Style
i Guidelines for
4 Ada Reusability

o « Use meaningful identifiers.

G Make frequent use of
E: - attributes.

5?: e Avoid literal constants.

) e Use named parameter
association.

G e Avoid the “use” clause.

o Use the “renames” only to
-y expose part of an abstraction.

iy o Use fully-qualified names

 Create adequate, concise, and
precise comments.

‘::: ©1986 EVB Software Engineering, Inc.
i
'
216
"

(1

EAB A v Od) 2 80y 03 g Aoy BTy, W0y 0 BT Wy g W Ty (AATRRXA 39,5 HERYLM N T
4D ;’:‘ﬂf‘c*”e'ﬁfn‘!‘o‘f’q‘?ﬂ”e’.';",*_A’:'n":"'a’.?a".‘«,’..'s!.’:‘a’qut‘ﬁ A gl e G b Klgn e b RSOGO NSRRI R

v o e ey ~ - J J - . » . = . - N hd B3 0 - 1 - "0 3 O - TS TP T T P TR TR TR TR ATy Y 7] My T Sy vy

¥« Style Guidelines
N (Continued)
8 .o Fully exploit the separate

i compilation features of the Ada
language.

e Make frequent use of subunits.

e o Avoid default values for
descriminants, record field

- values, and formal parameters.
2 « Avoid pragmas.

n o - Avoid |

B “unchecked deallocation.”

5 e Avoid

“unchecked _conversion.”

it o Avoid anonymous types.

s » Avoid pre-defined and
e implementation-defined types.

Avoid optional language
features.

S
Pp A

(W 5
L =
) i ©1986 EVB Software Engineering, Inc.

:'ﬁfg 217

B DO OO0 POLIONT O M AOD0O0U YR D
R AU a'.’t’»:‘ waatah ! ?t‘?i;"h‘? : ;‘?‘g‘:‘ OGNS '«5:‘?:“‘.;,‘!?;‘021‘%{ 5,‘&‘4’5‘,9’"2)‘ ‘:0‘ 5"3',*?_#?&1? di'-'-ﬁﬂ"’a’f“ﬁ‘t’n"t"‘ NI, .“,‘)""‘f"_ ¥ i‘:!:“il‘ “f"'v..":tj

Style Guidelines

2 (Continued)

i Avoid attention to underlying
% implementations.

 Avoid restrictive modules.
w Strive for limited private types.
i » Make frequent and appropriate

use of packages. &
i: e Make very frequent and

R appropriate use of generics.

o Isolate, and clearly identify
environmentally-dependent
code.

4 .
4 « Watch out for assumptions
4 about garbage collection.

N .
IR i ™

@

o ©1986 EVB Software Engineering, Inc.
o

s 218
[

L)

R0 DO O ML RO L LX) " $ e A - 8% 87 AV AT A% 47y gRL Y GO 0 R ()
.",'."‘»‘l';"'\‘.'“,‘0‘-".\".m‘*‘:ez.‘n?'-‘"ua‘i‘.:‘v?:'@‘tgi’t"sz‘i‘n.t‘:ﬁ.a‘4‘.\"..-\‘P’m‘i‘.x’.“.u’?‘,g"‘.;“fﬂ't’s" Q"‘J"‘.‘ﬁ’-"t’l‘.‘:‘-‘t!"‘p”'.ﬁ‘*‘.&f‘\\"#",'?’«0 L.y ﬂ",&t‘g“‘yl"’.*q*.‘f‘;“‘- ui"ﬂi’:.s‘!’»‘z

¥ Reusable
Modules

peet Let us consider the implemention of a

% data structure in the Ada language.

¥ For purposes of example, consider a

" stack. A stack is a list to which we

o may add or delete items from one end

R only, i.e., it is a last-in-first-out data

) structure. The question is: “how are
we to implement a stack in the Ada

o language?” -

B h ©1986 EVB Software Engineering, Inc.

B 219

SO AT T DN y
R A S A D S R KN

Reusable
by Modules

(Continued)

P o FORTRAN Mindset:
0 Implement the stack as an array

RS o Pascal/C Mindset: Implement
the stack as a linked list 3
i « Primitive Ada Mindset:
X Implement the stack as a
package .

b o Adequate Adw Mindset:
Implement the stack as a
generic package

% e Advanced Ads Mindset:

o Implement the stack as a family |
of generic packages. |

"y ©1986 EVB Saftware Engineering, Inc.

T 220

DA A 1 ASMIUCOINN
X ;‘!‘ BECE ""t"ﬂf‘,‘l{‘ !?“h!i w?\"‘lii“Q{D‘aeﬁ‘e‘b’y‘a* .

) OAONOGO00 DU \J (] y OA0 PO IR VAN
R R A Y O N R R X A B NN XX

@

¥

s

Reusable

£

Modules

b (Continued)

.

5 The experienced software engineer

. recognizes that the timel/space

behavior of a component is as

important as its functional behavior.

~ (This emphasis on functional

R behavior is often the result of a

(e functional decompostion approach to

8 the design of software.) When we

S speak of time behavior, we are

R concerned with the behavior of the

) component in a concurrent

3 environment. When we speak of

Rt space behavior, we are concerned

, with how a component utilizes

p ‘memory.

- |
@ ;
:«:E T ©1986 EVB Software Engineering, Inc. |
o 221

T OO I ANV (Y3 ;
) r 0 0 DD BAOB0 D OGS ONO SN OBOAOBOSOBONON) Ond
%‘Af“'nfl'-’l.’!!I’we“-f‘_'o"'n.l"wn'l’etl?v..l’-fl'nel!'ofi?:‘J?of'i’o,"ae"l:"st".l.-',i.‘.'n‘!u"ﬁ:‘.hl't:"!.‘!l.'?!t‘!'..‘!'-‘!n\\'.93‘90:‘31.‘5'-‘!'»‘!'.'.".‘!0s"l-’10s‘!h‘?h‘?i»‘:‘s‘?‘»-‘?h‘!'-'!'n‘!'r'!.'e‘f'

0

b

§%:e:. i} B} &
Characteristics of

o =

Highly-Reusable

X u ‘

- Operations

4

X

b

R [Primitive: The operation

YR ~ cannot be implemented without

- - knowledge of the underlying ,
e implementation of the object -
R « Complete: We have a minimal

8] set of primitive operations

e which will allow us to

el implement all necessary

; operations for the object

e o Sufficiemt: We have added

s additional operations to our

b minimal set of operations to
enhance the usability of our

£ abstraction. .
}é €©1986 EVB Software Engineering, Inc. &q
s

0 222

4

i PR LN DR DTS DI R DRt S IO R KT ODL R

AN
A
4

Tl
%
‘.,,, i

oo o ._q
;,f.”"d N

&

Classification of

-

et
i kel G W e

o =~ -

A'.J.J. >
'

A r

o Momnolithic: The object is not

composed of substructures,
e.g., stacks and queues

'V‘Vﬁ:'t N
oA

-
T

O
A
o]

s

A

o Polylithic: The object may be
viewed as being composed of
identical substructures, i.e.,
the object is recursively
defined, e.g., lists and trees

AT e e
.r('.xiL' [t

N

- e -

%

e

l.’ s

@AY @ XN LL

©1986 EVB Software Engineering, Inc.

223

B
n
(1N - . . o .
. - - e , AR n - :
f:m.:'i..:'\..o','.:'A“-'i!:".'\\.l Ortn ety sttt Rttt

1¢'t IS e WUy . O e - o G ooy o g wxw.-.-n_‘n—bwmumT
.o""t
9"“

g Classification of
b Operations

e « Selector: Returns information

about an object, but cannot
I change the state of the object

2 . Constructor: Changes the
state of an object, often does
By ~ not return information about
bt the object

e o [terwtor: For objects which

o have a structure, allows us to
X visit each node of the structure
% and to perform some operation

i at each node. This operation is
(R characteristically a selector

operation.

XX L]
=Y

S8

£
85 Sy Sl Sl ¥

©1986 EVB Software Engineering, Inc.

- .

P

224

kA
(N

NG
\0
c...o

LAR)

M) ’ 5 £ s " — " 1
LAY OOOGOCOY U ' b 9. {J 0 X) MG

’:v"'.‘?0."ls"i:.?ﬁn‘..";'!l..".l"' »‘.'?':‘?h".'l‘!'i‘!'l"."‘!'l".‘l‘.’l "A‘!‘i‘!‘.\"‘l‘:‘i‘:‘\‘!'6‘!.“!‘3‘!'0‘!‘.‘:"‘.l'l.:'ﬁl:'ﬂ.»hi“)("’A‘l"‘.l",""lﬁ"e‘.’:"‘?ag"’.\'! WV, a'?.t",“e"'A'?‘»?i"-‘(’v.-’«3 SOOI

Taxonomy of
Primitive

“ Reusable
Modules

22

X g ’ i"'f'
‘:ﬂ‘- [x
o o

Bounded/Unbounded
Iterator/Non-Iterator

2

e el
\ 25
®

Managed/Unmanaged

S5
[]

Concurrent/Sequential/Guarded/
8 Controlled/Multiple

s o Priority/Non-Priority
:;45"‘ Balking/Non-Balking
o e Limited/Non-Limited

)
o o P
—

e B ©1986 EVB Software Engineering, Inc.
UM

225

IO ONEOUBROOGONOOCOGUNNOOO0GER N OOO0ON DA GEAD A NSRS OAN DR] AR DNKAER
ettt ‘."'.‘,'a".‘\,‘J’\‘2"1‘“‘a‘.'»‘:';‘?’:‘"A‘:':"n’t‘ s ?"AA:"\‘:"al:h“;‘;*‘“c",\h‘f ' ";“‘lﬁiﬁ,"‘e.,“v~"’?u"" K "‘s.‘?»'n.‘7n.}“\e‘t"w?“\f"u'ﬁ&'ﬁ!" t f‘?s}%‘lmrf,'°w"¢‘v§t‘:"e" '

S ¥ [} 5
sh e e rota et

REOCOBOBOMTNN
.9,"4',3',1‘“.’“2' "ﬁ,"&,‘v'.l!‘!

Bounded Vs.
Unbounded

Boumnded: There is a specified
upper limit to the number of
nodes in the data structure,
which is specified at
declaration time. (Note: The
underlying implementation is
accomplished via sequential
allocation, and the use of any
dynamic variables is strongly
discouraged.)

Unbounded: The data

structure is free to grow or
shrink based on available
computer resources. These are
implemented using linked
allocation.

©1986 EVB Software Engineering, Inc.

226

KN

, OGN0 OO OO N OGO0O0O0SRK
B R R R

%

7o B

T
s

Liet
62

T <
>

Iterator Vs. Non-
Iterator

- ‘.’f ™

’.J‘i-

Xy B

<

S

w - o [terator: The component
X provides an iterator operation,
e i.e., a means of visiting all the
e nodes in the underlying

- abstraction and performing
» & some action at each node.

i » Nomn-lterator: The component

S does not provide an iterator
e capability

NN ©1986 EVB Software Engineering, Inc.

Ly 227 |

7 AN AR CTRICAIC AN Pt P ML RN N AR ki O DADGREABEINOGIBGONTOONOTNIN
A.*‘r: VENON 5’5:4:“'3\“:(2",‘%f‘utlia:i ¢ ‘f‘u..‘;fl?u.‘ti1’Z’Jﬁ'““a;hji?."-\tt‘p‘:l?a"’o:%!@..'ﬂ'fu,,' .-}qt‘*gv‘ﬁl_a.l!).lyqil“k"_'ui&'i i!p,‘!g;e’g.ﬁ‘l‘l?q‘i'i‘i,‘ﬁjsﬂ"l

Managed Vs.
Unmanaged

b o Mamnaged: The component

ey provides its own memory

B management, e.g., it maintains

o a “free list” of available nodes
A rather than depending on

s features such as - | 9

ol unchecked_deallocation

T o Unmanaged: the component
i provides no memory
K% management capabilities, i.e.,
it depends on those provided
o by the environment

R ©1986 EVB Software Engineering, Inc.

o 228

| @ Sequential,
Concurrent,
Guarded,
Controlled,
Multiple

o Sequemtial: The component

: will behave as expected in a
non-concurrent environment.

N & In a concurrent environment,

' the component may be subject
" to data and process pollution.

2 n
T A

FEREAS

R

Al

ey

R o Comcurremt: The component
B will behave in a reasonable
manner in a concurrent

B environment, i.e., the

e component is constructed so as
7 to avoid data and process

a pollution. No user action is

R required

B A
() A
’E:: % ©1986 EVB Software Engineering, Inc.

AL 229

N g e 000K RADOD 0 DGO0G SO200NOEGINOINLGINE
?ﬂ‘«fﬂ":“*‘”~"‘sf"'?‘&>‘ﬂft!5‘4‘*‘z9"¢A"45¢ Ti’ifé?o:ﬁng‘fﬂ-"?{' 1ai'zi"uf*’uA‘f‘f"q-l*ﬁnﬁ’v;‘?tn"i,"u“'v ‘f*;“é“?:."an=

thn DAOADNE
RGO OL TN

gg Sequential, A
Concurrent,
- Guarded,
Controlled,
O | (Continued)

i Guarded: The component
ol provides the user with the
e capability of using the o
% component in a concurrent

e environment, i.e., a semaphore
o mechanism to “lock” and

R “unlock” objects. While this is
very dangerous (as opposed to
concurrent components) the

b user has the ability to easily

4 construct higher-level

B operations from the “atomic”

i operations provided in the

K guarded component.

&
N ©1986 EVB Software Engineering, Inc.

230

3 d) TN D) N g0 L]
D A A AR X R N e O D D O R O R R S O D N DR DO O OO

bl 3 il W W W O

L o Sequential,
Concurrent,
Guarded,

Controlled,

MUtlple

}' | (Continued)

‘ « Comtrolled: The user of the
fs component will prevent the
b ke object from being

e - simultaneously accessed by

e two or more processes. The
g component, in turn, will

3 | protect any state information
R (e.g., a free list) contained

B within the component. Note
:’ that concurrent components

= may be built on top of |
g controlled components. |

o o~

;.':;; ©1986 EVB Software Engineering, Inc.

Yot 231

OO e, v ¥ 05000 RO ¥ Y () OO RGO OOOHONGIN
T T e Lt X O A K A R O S TR sttt

Se. 1
AN OO ORI
e, l,. ‘ul"“l;,:l.,!\?' A‘.h‘t'ﬂ'hﬂ'ﬂ"é’ 0.’;‘:"'

- Sequential, 1
Concurrent,
Guarded,
Controlled,
. Multiple

7 | (Continued)

o Multiple : The component
0L provides for multiple reads

~ (selector operations) of an

LS object while sequentializing

e writes (constructor operations)
g to the object. This allows for a
high degree of concurrent

i access to an object while

i preventing corruption of the

o3 object or state information

B associated with the object.

E.,:.‘ . ©1986 EVB Software Engineering, Inc.

[M 232 |

§. %0 W|!“'

NSO r 0 U0 O CNCSN O BRINSE AH DN NOSOGDN0 SO ONONCOLGONALOROOLG
g et Tt Ot T R R S Lt

erde
o5

'Eo
-
'l b 4

Priority Vs. Non-
Priority

o [Priority: The nodes in the
data structure are ordered
based on a priority scheme,
e.g., a priority queue. (Note:
In a priority structure,

(e operations on the nodes are
dependent on both those
normally associated with the
abstraction, and on the priority
of the items placed in the
structure.)

« Nom-Priority: The items in
‘the data structure are not
treated on any priority basis.

©1986 EVB Software Engineering, Inc.

233

U0 iy Ay b, a0y Ble 1) (Vg 10y TV TF, %0 TO0 T T P0y 0g iy 0y (P T T ity v AT, v QP ety Sy 100 13 T Ty 3V f0,r 0, 0% e atyaty (T,
ettt Stttk idtinnetaitan ot dnaialdialdudinital e ia ettt et

AN R o,

o

et

1
?"v’.

i’

)
) “

P4

S - ‘ol o
Pl gkt
¥y

PALS U' 5

= N

-

- _ o - e o
TR o

PR
o ot e
B A

-
R
T
SN

YR
PE 2 AL a»",‘

ol

2

o o,
oGS

-
B,
Pt

x5,
o
24

-2

>

b ol Sl a3

e e P
ML A A ® |
s N R

Balking Vs. Non-
Balking

©1986 EVB Software Engineering, Inc.

Balkimg: Items may be
removed from a data structure
in a manner other than that
normally associated with the
abstraction, e.g., in a balking
queue, items may be removed Wd
without first bringing them to
the front of the queue.

Nomn-Balking: The component
provides no other operations
for the removal of items from a
data structure other than those
normally associated with the
abstraction

234

)

(Q OHG SRONOAOIONGMN ¥
. ":'qlfl."““‘ ‘"E’,l‘,’»‘!‘.‘?'.""g‘?‘gf;.‘tﬂ.,':”'ﬂ?'

b
H .
1
)
'
"
1)
(
)
i
1
ot
\.|
N

el

-“', a'. _'-?‘A‘J"‘

T

Limited Vs. Non-

Limited

Limited: The abstraction is a
very large data structure with
specific bounds, however, the
underlying implementation is
accomplished via linked
allocation, e.g., sparse
matrices

Nomn-Limited: The underlying
implementation is consistent
with the abstraction, i.e.,
bounded components are
implemented using sequential
allocation and unbounded
components are implemented
using linked allocation.

©1986 EVB Software Engineering, Inc.

235

AR GA0ON0a00
l \ﬁ'l..'l s'l.. 'i‘ c"l) t"".i i. S, q' .0" "’\0 “A‘"l". i, ‘A' ’A .l. a"'d 'n’ ’4‘ l" l' 4‘ 0'0‘ ’A'. W, I' 0N, ‘i'."“.'. "‘

D000
.0'2‘;‘

OHDONN

3 Concurrency
: Issues

e Data and process pollution
¢ o Indeterminacy
 Deadlocking &

Friendly vs. unfriendly tasking
implementations

- - -
Coterur
[

‘.4-

.

e Degree of concurrency

e Guarded vs. Concurrent
components

MY FEED

o

©1986 EVB Software Engineering, Inc.

'
" 236

¥ o n
L0 Ol IO QN0 0 QU OO AR M MMM NN AR KA KK
’ ':"!:":"’ﬁrt" a‘ﬁ,‘:gl's :l'at":?l'e!lf n!"o’l"..l'.q:l‘nfl'l!l':.."A?l'p‘.t‘o!l‘oh' e ;’l.e'l'a%';fi'o!“.!".‘!‘;,l"!.’ aabel ﬁ’a’l‘p‘,u‘q bt

O R e 4 O [
vt e il

s } . ;’
FEE

Y o WX
P
2=

o
SEANEX

o
*

i<
'.

P i T > K, ¥y 0y 0]
S rary wetesurem el]
"\i\'xx—s: L > ;'e ';’Hx.

""‘\
g S Bl

-
L EA S ST O WL

22X
A x

K
5
'’

P

CRRCATA T)s (AR
“-’f". *","‘T'".".“."'. IR R b e AR

A
&

Rl

«
l"‘u,
e

Garbage
Collection Issues

« Use or non-use of access types

 Allocation of heap storage,
e.g..

for Item'Storage Size use
5*Kilo Bytes ;

o Use of
“unchecked_deallocation”

e Time to allocate and deallocate
heap storage

©1986 EVB Software Engineering, Inc.

237

Al g
[1.- :
FoPlaths o al e

-
-
-

Compiler Issues

~’

i * Avoidance of compiler
2 - dependent features

'*.g
 Considering compiler

= optimization features -
s _ . .
i » Avoidance of “tuning” the Ada

i code to any specific compiler
; (or hardware)

©1986 EVB Software Engineering, Inc.

238

¥ .‘.’
e
L ."

46y 3 2o a4 GEEP DO) OO0 I A S X M ST tk;ﬁl]
'*5:.‘:-' .?Q""‘o"’.l“c"'-!’l,‘s,d',’l‘! A‘,‘,".‘?‘"b" ,’f"n“‘;).‘—‘;‘!‘;\!"l‘—'g’!’o_\!'q",‘»,- < -J'é.’. i...f’o...’-)'g.). -.l.!h- l‘.““-'&'a‘"-‘l"‘l‘!‘!w&l""" L R o'y

- - - - T WTIYE WES T W ———"
= w w —ww v

: Exceptions In
Reusable
Components

€ « Use of exceptions to report
exceptional conditions

£ o Designing and exporting well-
I named exceptions

» Noting the use of exceptions in
the comments for program
units

 Handling exceptions in Ada
tasks

H @ POt s

g
-

»-

WEEEL P LS AR

;- "
.b-..‘ - e . :

o
~ ©1986 EVB Software Engineering, Inc.

239

R &

N 4 ! (A XTI N \ o O A AN AN OO OAAT R SOOI OI IO KM
S et et it I A T T St T 0 et 0 T T U B R At T T W T

%

Efficiency Issues

e o Inverse relationship between
B efficiency and reliability

Ol o Efficiency vs. reusability
o Efficiency vs. portability

d)

o Use of pre-existing, proven
ik algorithms ~

» e How much efficiency should
il you strive for

s o Exporting objects vs. exporting
e types (this is also a strong
o usability issue)

©1986 EVB Software Engineering, Inc.

A'a. 240

0

A\ GO 5 CCRNYY) 0 W A O § OUO0 GOORWX] OO0 O U
B R X A R T T R Rt R K R o e ot N A S OO ST

-

,
S
R x

Subsystems

- :'..".‘.-4-,«.' o

g Subsystems are collections of
packages (mostly generic packages)
o which behave logically like packages,
?-.:. i.e..

0 * The collection is treated as a

g unit (even though the syntax
e ~ and semantics of the Ada

sl language may not necessarily

' be used to enforce this) -

o * Objects and types, as well as
R operations may be exported

X Some of the operations,
o objects, and types are visible
R while others are hidden

hh ©1986 EVB Software Engineering, Inc.

® 241

;!' ' Wy Yy \ (el 3 4 ; DSIWEH . A) Yy XSOAOGHSIRLSD O -. DK) Qe GOSINOSONE
§ ‘.“ SCOSCAR OO LSRR e, i OIS .ﬂ ki . o .- A L]
,l.:"b’: |.. ‘: . LSO t 1 !-‘i“.’ A';‘I , ? 3 ?! ?)]‘ A "' 0“" :‘Q‘,' .‘ ". . ? -. ¢ ') 4 5! ‘ e ?)) ’.‘?‘-‘ ..’ 5“ '! “,'h‘_' ‘! ."' “,‘h‘? ‘! “.ﬂr““-.ﬂ, t’ .' .:“'4 i K) '!f‘\t.‘e _C‘ ‘Q‘) .

Subsystems a
! (Continued)

Ry * The hardware analog of a
i Subsystem is a populated
printed circuit (pc) board

o ~+ Subsystems are of a higher
i level of abstraction than
R packages

g * Like populated pc boards,

B subsystems are not stand-alone
applications, but are used to

o construct applications

PR Examples of subsystems
o include menu subsystems and
i windowing subsystems

a1

 Subsystems are less common
R than reusable modules and tend
5 to be more vertical than

R | horizontal in their application
areas

K ©1986 EVB Software Engineering, Inc.

242

AT 1Ty T OO PR T TR Cre 8 a0 ¢ 02 BTy, 8 Q010 D38 08
SOt ARG

i 3 Ay, 0 QOSRGOSO IO M A
Gy b [} (L0 UNMCAM PN T AN b DRSO OO AR 0 M
eﬂZ;.~3!e§‘.~3!v'.‘,.’.,?v!?"?M*!*J".'»Ju;‘.',f;l.‘-o.ﬁ', FORCRR U NN IR OCERLR S AT

s
o
&

";'i';:
Tools

B T'ools are stand-alone applications.

(The usual connotation is that they are
g used by software engineers to

e automate various parts of the

' software life-cycle. Booch classifies
o tools as:

"

Utilities

o Filters (Kernighan and
Plauger)

R e Sorting

i » Searching

\J .‘ [;
0 il
e ©1986 EVB Software Engineering, Inc.

243

R0
D) g y . g Ty e
BOSCATD C o SRR OOUAGAGO0000000 "y BOAING v (0 et e it at R g gt T
N :" a't‘t"ft'.'ef’é?ﬂ’. AL “’.‘x"‘.“'d'.“Oth':’.!.'_'.0:‘.'!‘,'0‘:03’.\?‘." wn 4t "\'?’sil.‘;i’.".Ilg.‘né?‘,'r',‘a'*?’:’.‘-!":'!‘:‘e’-_‘f'M“.'ﬁ"d"ail-'x-\"?n.‘.a’m“'::

v I
P\

- e
r
oTen

e

)

17

‘_‘,,,,,
sl
-

" 0 N
LM OCEER M R M
sttt

UL
ROEWAE
ANPALCIN

©1986 EVB Software Engineering, Inc.

Lh

Tools

(Continued)

Often tools are considered within the
context of a software engineering
environment. This implies that their
reusability will be strongly connected
to their ability to interact /integrate
with the environment, and their

ability to interact/integrate with other g

tools. In the Ada world, this requires
some additional concepts:

« DIANA

 Discrete tools (e.g., tools in a
UNIX™ or VMS environment)

 Diffuse tools (e.g., tools in the
Rational Environment)

244

(h $

g 8.3 8 ST TSR TS, %] AR OGOGHGIGOGH BOOGOHIGI0OBETOROL
B A O O e e B A R R I O N R O ORI

@

i
i
|
!

Tools

(Continued)

Tools may be either stand-alone or
invokable from within an application.
For example, a tool which analyzes
the complexity of Ada source code
L . might be parameterized so that it may
e be called from within an application
i and pass the complexity information
5 to the calling unit as an abstraction.
o Note that this increases the
o reusability of the tool.

R ©1986 EVB Software Engineering, Inc.
, 245

A AT Qg AT, AR LT B Ty ROy 0y TU ATy AVTRTy Do 01 8 m o013, 0) PR UK A : ANAD ' :
RN R RN RSOV S SN S UL Y J*"‘.!"?“ﬁ!l’li‘fﬂ"t"’nz\faf*'.x?"e:l’e:‘!vft.'»’!?s"’,’i'ﬁ'n,"t:*‘12056&3tf‘.’aft‘t?}!a%"%‘."a A NDE RSN N

. PO)
;'\' K ‘.(j;‘,‘.\'

'g:-' TOOIS
L (Continued)

2 To increase the reusability and

portability of a tool, the software
engineer should:

: » Isolate and clearly identify any
R implementation-dependent
e - modules

°

Use packages instead of files
for 1/0.

Follow the previously
mentioned Ada coding style
guidelines

FELES

-

e
[

>l
Pl

T T
30 2oy

P Not attempt to tailor the tool
b for any specific Ada
o implementation

-,

h
=
%;

©1986 EVB Software Engineering, Inc.

1
.\
/) 246

N TR TR ™ TP T EETVT TR T T -—-—uu---u-"vuw.-nm-nw\-nmn\w\n\n\mwm(mwwa

b

Y
¥ o P Y

-,
[T o

-
.‘.

Reusable Designs

DPEES " i e T

o With all due respect to Ada as a
DL, we will define a software
design as any non-code
software, e.g., documentation.

e A previously-existing design
for a non-Ada implementation
(s - could be reused to implement
the application in the Ada
language.

NA‘--:{“;_.‘ a-:“-'*.""-

SoLSe

« With a well-engineered, design
(most likely not produced via a
functional decomposition
approach), parts of the design
might be incorporated into
(reused) another Ada
application.

o PR R X R R \-o"
o~ - ® » W -

- o e
)

o o

L=t " Y

©1986 EVB Software Engineering, Inc.

& BRI]

247

[\
H

%)

8.8 P LN P ENET. ¢ oY 5 ¥ 0 MA AWK OOOO00C
B N K e s KRNI T e RN REHDS C S T SR Tt P S R R SRR AR

N ‘g AR mtE A% . B ok A ko Ma T aav Sl v jai Hav et Hat ga® Sal Ha¥ Eat Fa® $.9% Bat 8.0 2.3 2.0 2.0 A4 R8N A B 5.8 Ata ke 4"

Designing With =
; Reusability In
Mind

S

& e Two basic problems: produce

a8 reusable software as a by-

O | product of the design effort,

& - and to make use of previously

s existing reusable software.

e Some software development &
i methodologies are more prone

0 than others to produce reusable
software.

* Reusable software can be used

‘ in both a top-down and a

B bottom-up design effort.

« Rapid prototyping is possible

. ,

; with carefully constructed

reusable components.

:;: ©1986 EVB Software Engineering, Inc. @
248

.

h o By WOA) DOODSR OO0 AZRIOR 0 10,000,470, 8% e Uy
At . ,.'-:‘;‘:'g’.,'l .'l.' s\fn’.,l‘.‘t‘.fa‘;, ,l:i?l& () 0.\. ."ﬂ._.‘ .o..’n“‘a‘.'c..,.z.:'l.."i‘-‘l.'.'i. ORGSO A RS NS R RS RGN ‘.Jﬁ ‘l"“.*‘?q"

" - = al - kJ = s o 1 .3 o ot 2 > N 2) I3 e 3 X el o B AR AR 4. Ala Al - 8 &
WAy

Designing With
n Reusability In
Mind

(Continued)

P
«

SO
“-

T 't':n _\"\:f-;‘ﬂ!)
TSN

-
LURN

One of the largest impediments to the
creation and use of reusable software
is the creation of a hardware

architecture first, and then requiring

R ey
-

ORSEo
[% 4

ERr OF Gy W .

e that the software be designed around
i the hardware. A far better approach is

software first, i.e., the software is
designed first, and then the hardware

is designed and built to support the
software.

v

. e . _i_
[ENASTRILOAESLY) A
SR O s

e

> \4\(-

% ©1986 EVB Software Engineering, Inc.
~

‘q:

° 249
e

FU, 0

2y -

L} N L Y "\-).'r N L, S 5 Ay s] S r).- "'. , N PO T, e (AR, . N - . L)
t’:l'c: J?‘!h DX !l.'{- : "' AT ' ' ettt lea Tl s e el !0:‘!'. !'o‘&"."‘?"‘!ﬂt‘!ﬁ feaNlo el .'0‘.M":d!'y‘!ﬁ‘.'n'!'u‘:iu’- ""a'!‘:‘!'t.'n'!lc‘

......

i Major Obstacles «
to Reusable
Software

* NIH

i “Only wimps use someone

& else's software.”

b

o * Contracting procedures which
2. - encourage “re-invention of the
e wheel,” large staffing, and low q
“é: quality software

i Lack of confidence in the

o) quality of potentially reusable
; software, i.e., lack -of a formal
& certification mechanism

e Lack of technical expertise

it

it Unawareness of technology, or
reusable components

e . Lack of useful tools

&

s ©1986 EVB Software Engineering, Inc.

0 250

)

« xR

s,

E

CRGAY) V00 AP O P LY E 0 WO W O OV
OO XA AN ..'-!J...' N X l.o'ieo .o'i.& .c'l!c 9.s .:‘\..- (X' 4

X 7

o ek a8 Mag 12k 4B 283 .® 828 baB SaR 2 g 2.a'8 & b m R A a4 AL atd &Y R T OO O A X O R O N N I T T oo T O
U

i . An Example of Ada Code

’;i:; 1 Defining the Problem

o 1.1 Stating the Problem

e Create a generic bounded stack package.

.-,r.; 1.2 Analysis and Clarifications of the Givens

';'.'35 1. The following is a definition of a linear list : “A linear list isasetof n >= 0

nodes X[1], X[2], ..., X[n] whose structural properties essentially involve only the
linear (one-dimensional) relative positions of the nodes: the facts that,if » >= 0,
. X[1] is the first node; when I < k < n, the k th node X[k] is preceded by X[k - 1]

P

¢ & and followed by X[k + 1]; and X[] is the last node.” (See [Knuth, 1973].)
1'::': 2 A stack is defined to be “a linear list for which all insertions and deletions (and
3,

usually all accesses) are made at one end of the list” ([Knuth, 1973]). This end is
usually called the rop of the stack. Notice that the above definition implicitly states
the Last-In-First-Out (LIFO) property of a stack.

g:’ﬁ ‘ "‘"
w

By .bounded, we mean that the maximum length of a given stack does not change.

o Thus, a user of this generic must specify the desired length of a stack when the
WY stack object is declared. :

o “W' -4, The stack abstraction must be sufficient, complete, and primitive. Sufficien:
e means that a sufficient variety of operations are provided to allow the user of the
';:-: abstraction to implement what is needed. Complere means that all aspects of the
,.:. abstract behaviour of the abstraction are captured. Primitive means that only those
:{:! operations that could not be implemented effectively without access to the

underlying implementation are provided.

5. The following operations (meeting the tradeoffs of the criteria defined above) are
defined inside the stack package: push down an element onto a stack, pop up an

ML clement off a stack, check whether a stack is empty or full, find out how many
oy elements are currently in a given stack, find out the top element in the stack, peek at
™ the n th element below the top (where [<= n <= currenz number of elements in
T the siack), clear a given stack (i.e., create an empty stack), test two stacks for
P equality, and copy one stack to another.

" 6. If a given stack is empty and the user tries to pop an element off the stack, an
) _ exception (Underflow) will be raised.

Ll

[7. Overflow will be raised if a user tries to push an clement onto a full stack.

K 8. Element_Not_Found will be raised if a user tries to peek at a non-existent
1 element or tries to find out the top element in an empty stack.

"

® 9. We are not concerned with what types of elements are put on the stack. As many
; {,;.; kinds of elements as possible should be allowed.

W ‘b"’"

DL

©1986 EVB Software Engineering, Inc.

251

v W0

' 0 OAGNOBOGIAINON0
TGt s T I g g T

L' LA EO U L Rk +

ol 2 Developing an Informal Strategy

) j A user will be able to push an element onto a stack, pop an element off a stack, find out
"‘»_; whether a stack is empty, find out whether a stack is full, determine the number of
] elements in a stack, find out the top element in a stack, peek at an element in a stack, and
Uit clear a stack. The user will also be provided with a means to test two stacks for equality
p and a means of copying the contents of one stack to another.

ENOON

G,

- e e

T B

©1986 EVB Software Engineering, Inc.

&~

252

S

W
l:.
’||' ¢ e
RNy A R SR T,

RO - .

R @t
b 3 Formalizing the Strategy
3.1 Identifying the Objects of Interest

" 3.1.1 Identifying Objects and Types

0 A user will be able to push an glement onto a stack, pop an element off a stack, find
out whether a stack is empty, find out whether a stack is full, determine the number of
Kl elements in a stack, find out the fop element in a stack, peck at an element in a
{ stack, and clear a stack.The user will also be provided with a means to test two stacks
W for equality and a means of copying the contents of one stack to another.

o Objects Space Identifier
- user Problem

y element Solution Element

~ stack Solution Stack

o @r' top elemc:it Solution (=Element)

. ‘l. -
o)

©1986 EVB Software Engineering, Inc.

A 253

) - .- ppe g
Y 0) R 0 DO POUTOA O O ORI A RS NOC MR X) OO OUOEOOOOOC OB ‘.',‘Q.".".“'\"“"‘\"‘
,’AE:’(A.:“«’.:'*." 9,!.%.:' s "‘:"’L&\‘.:'!e‘\.‘..lqﬁ.‘q'l.\.l_"‘.,qe'fq“??c".&,l_, -\.'\’ .qu'l‘e.&?;'l..q.l“:.ln,'l‘“.'l?g'l‘-(lb n,’.?l.}. h‘a'l,‘a‘b‘aﬂ’.‘b‘.ﬁ . ‘l‘r‘b.‘e‘“,‘p‘.i»e»h‘.‘!.n‘-t.* OO G YO

=2

o 3.1.2 Associating Attributes with the Objects and
o Types of Interest

K Element

:;t: -- is an abstract type

e — can be copied

o - can be tested to see if it is equal to another clement
") Stack

:"u , -~ defines an abstract type

K : ' — its fixed maximum lcngth does not change

e -~ can be empty

f’g'!\ -~ can be full

e — can contain up to some user-defined maximum number of items q

3:;.,:. — elements in a stack are pushed on to the top of the stack, or popped from the top
gy of the stack, but all insertions and deletions are from that end only.

D) - The Last element In is the First element Out (LIFO)

-
o
.

o
s

L3
-

L.

ot s

‘
1@

LR\ N

g.‘. ©1986 EVB Software Engineering, Inc. @
o

Wy 254

ONONG0 [0)

LA A . (OO 00D N 0 () 0 O ¢
W At 'l.”Dt‘.”:"l&‘!!a‘!t‘abf‘!Dt‘!'t"i!"l.‘.‘h‘..h...l,‘.h” ,—i30:'!1;"tf‘!t:‘!h"";'!ta".l.‘.'.‘!l,,‘!t»,‘!%'!h\'u‘!‘."h"'n"’o“h‘!‘u‘:'o".'u‘e‘l"‘" ittty

[M)

o 3.2 Identifying the Operations of Interest

B 3.2.1 Identifying Operations

R A user will be able to push an clement onto a stack, pop an element off a stack, find
o nm_zhgth:LLaas;k_xummy_. find_out whether a stack is full, determine the
3';: stack, and cleat 2 stack. &Wmm
i Operations Space Objects Identifier
R will be able Problem

push an element onto a stack Solution Stack Push

0 pop an element off a stack Solution Stack Pop

o find out whether ... is empty Solution Stack Is_Empty

Wy find out whether ... is full Solution Stack Is_Full

M ¢ dewmmine number of clements Soluion Stack Number_Of Elements
A find out the top element in a stack Solution Stack Top_Of

i peek at an element in a stck Solution Stack Peek

D, clear a stack Solution Stack Clear

K will also be provided Problem

' to test two stacks for equality Solution Stack "=

copying the contents of one stack to another Solution Stack Copy

©1986 EVB Software Engineering, Inc.

100 255

I
\) ’ A% 8% ¥ ﬂ F ¢
B R K KRR KR R R R VKRN h‘ R R R RN NN R AR KR KRR S TN

S

T
A
P X

AN OOOCOAORONNOGIMBDTIN0 0 D OBOGERD 4 8 WLt it
R S R R R R e R R R O R IO

3.2.2 Associating Attributes with the Operations
of Interest

Push

Pop

Is_Empty

Is_Full

Is a constructor
puts a given element onto the top of a given stack

rznso;s an exception (Overflow) if a user tries to push an element onto a full
stac

Is a constructor
pops the top element off a given stack

raises an exception (Underflow) if a user tries to pop an element off an
empty stack

Is a selector

has a true value if the given stack is empty; false otherwise

Is a selector
has a true value if the given stack is full; false otherwise

Number_Of_Elements

Is a selector

is the current number of elements in a given stack

Is a selector

allows a user to look at the content of the top of a given stack, i.e., the top
element in a given stack

raises an exception (Element_Not_Found) if the stack is empty

Is a selector

©1986 EVB Software Engineering, Inc.

256

(SR

NSRBI N KM My, s by

O
..“l,

I'ki ".

LI
?5‘;‘,“‘:

&

)
fof
\

T p———
S @ i s s

el el

AL LS,

allows a user to look at the nth element in a given stack (including the top)

raises an exception (Element_Not_Found) if a user tries to peek at a
non-existent element (e.g., there are currently 5 elements in a stack and a
user tries to peek at the 8th element)

Is a constructor

initialize stack to empty stack

Is a selector
returns true if two stacks are equal
two stacks are equal if the following conditions are all true :
1. the current number of elements in both stacks are equal, and
2. the values of the corresponding elements in both stacks are equal

Is a constructor
copy one entire stack to another

will raise an exception (Overflow) if the destination stack has an upper
bound that is smaller than the number of elements in the source stack

©1986 EVB Software Engineering, Inc.

EF 20

0
R AN

257

! DOX) OOx, ! AOSCAHONOO0A0UIROUGRNX)
b,aﬁ:l:"‘l,'.".ls‘?':‘.."':’s T ;l:‘:ls‘:‘i.:'l!!.l‘?’0!2%‘.:'0?“’?e.lg"’l?.e\"?!‘.‘2! .‘:3'.';“‘.“’*"‘-9 O RN

-y

4

.“‘l

.._,_,,_.
S

PR o
o al oL

- . < -
o @ 3
-
b

"'
.‘

1Y it et
.Q"'ff»".!’.‘;!'-‘:l'“,&

b 89,0000

D N NN

3.2.3 Grouping Operations, Objects, and Types

Stack
Push
Pop
Is_ﬁmw
Is_Full
Number_Of Elements

Elements

«none» (is part of the interface data to the other
1985] page 3-38 #3.)

©1986 EVB Software Engineering, Inc.

258

0 A Y, 3
Wy *i!v"".n'i‘.'v":o’*!l":n":o":ﬂlewgﬂ.p":o." !'to"’l"‘.t"‘,g‘

ORI »

&

program units. See [EVB,

@

0o)
ettt

B)‘.‘gf

g

" 3.3 Defining the Interfaces
",

"-f 3.3.1 Formal Description of the Visible Interfaces
: : The generic package Bounded_Stack conrains:
}:?' the generic formal parameter: Element,
f?::. thé type Stack,

f and the following operations:

4 Push

K Pop

i Is_Empty

o::: Is_Full

® Number_Of_Elements

." TOp_Of

k) Peek

. e

) Copy,

':53 e, and the following exceptions:

b Underflow

£ ement_Not_Found

)

3

N

K

o

AR

o ©1986 EVB Software Engineering, Inc.

W | 259

-

V

Q { WX KA QORIOTHO0 (OO0, OO0 L0k b, L DO H'h DO)
e t_:' :‘I!:' X ’Q’k":‘.:‘!&’l."l’o",!'l‘_!‘!‘- :‘A’IJ(I‘.. Ny !.’!' i) l., LW !’ .h. !\ ,!‘:‘.!‘2’!‘; !0,‘.."!!.‘!0"!!@!‘.‘&. !I:‘.Qp :‘;‘!ﬂ;‘,’:‘!ﬂ !':‘,?h"‘.‘?h’!h‘!l\ A !0."-%'

s 3.3.2 Analysis and Clarifications of High-Level
o Design Decisions

) 1. The generic formal type parameter Element will be of type private to satisfy the
v criteria set down in the Analysis and Clarifications fo the Givens (1.2) number 9

40 and the fact that assignment of Elements will be needed in order to put things onto
o the stack.

¥ B
RO ©1986 EVB Software Engineering, Inc.

:,":, 260

\

P 00 D :) OO 3 I AT
Y 'M’:‘ i, ‘Z#.‘;h"l:".'x':'n'z'n"'a‘-"u"'0‘1'#:‘!&!‘.q‘i’»"k’t‘l’. e ”t"){""’?’:’i‘a".‘o_‘!’«"‘t':‘-‘!l’“l‘m"«“'A‘H{O‘O'-“"‘A‘-\‘t‘a(""&»' RTINS

@7 w Lol L hon st o ATa ote Soa gd- o 4 '-'-‘-'_,-‘-“.‘“'"'---'T
.*‘
LA
%
E @ 3.3.3 Graphic Annotation of the Visible Interfaces
SO Bounded_Stack
R ' Beme T =
:|'|:Q] '
ﬂ:‘d becsssnes A A Al A Al A A A R B 1.
g S S < !
») v Stack \ :
‘:Q;': \. g s.- :. :
::ég, v Underflow " .
R TITITITITIIIIIY \
i ot Oveiow " N\ :
L] ow]
{ Neanan- temmnannn- 3 ;
5 " Element Not Found) 1
. Y \ rcamana.e . :
s eemessswsw Ceweseeese '
@ A ot ' .
» N |tetesesssssssenes- = :
o : Fop : '
e IIIiIiaiiiiiig :
8 ;| Ry ?
3 A oeceewsesew veoeseweew - e :
s o : Is_Full : :
R tIIIiIIiiIIIIIITL :
RN ! Number Of Hlements | :
o Sesesmas Soemseeses ' :
2 Top_Of : '
‘Q“ U i
":' KRR e esemeew. .]
’:"'0 ' Peek ' X
'é.'. e e ettt mcdeaaaad ')
i R0 M ; :
5 : N : : |
R ORI : |
o : Clear 2 : |
| 3 ;.‘.':.‘.‘.'.‘.‘.‘C.‘.‘:.’.‘.’.’.‘; E :
[] Y e eceseeseceneeeea . :
s = ‘
o R R R R AR LR LR i '
NG
[
A
L
R
e ©198
o 6 EVB Software Engineering, Inc.
o
i 261

Ry Ny ()

Lo ‘ g .
40 O N T A PN I T TN W] . PRI D)
s i s S e e Tl e bt i it o e e bt i il e,

HE W LI UR I W U U AN VI VT TR VT VI VWV T TR AT REw Y™ "“'w.m"'“"?

3.4 Implementing the Solution &
3.4.1 Implementing the Operation Interfaces

generic

type Element is private ;
-- Element is the type of object that will be put on the stack

package Bounded_Stack is

~- This generic bounded stack package provides stack manipulation
== operations neccessary for most applications where stack data

== structurxe is needed. In building this package, we were striving
-=- for the following: operations provided in this package must

-- be primitive and complete and sufficient.

-~ A primitive operation is an operation which can NOT be

-~ implemented effectively WITHOUT knowing the underlying

-=- representation of a particular object (in this case our

-= object is STACK). By complete we mean that a user will find

' -= that the following operations will be the ONLY operations

N == needed to manipulate a bounded stack in almost any application.
L -=- Whenever neccessary, a user will be able to build other

:$ -- operations based only on the operations provided in this package.

&)

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

2
)
[
»
c
o
o
0o
n

"
: Revision Date Reason
e = Sesme=s | Smeessos smeee | seeee-
Yat -- J. Margono 1.0 9 Jul 1985
a), -- J. Margono 2.0 19 Mar 1986 "type Stack (Length : ..."™ is
P - changed to "type Stack
~ - (Maximum Length : ..." to be
W - consistent with our naming

ALY - convention
) “.‘ -
B)

° -- (c) 1986 EVB Software Engineering, Inc.

—~ -—

<

X
?:: type Stack (Maximum_Length : Positive) is limited private ;
=3 procedure Push (This_Element : in Element ;

o Into_This_stack : in out Stack) ;

> -

e ' -- push This_Element onto the top of Into_This_Stack:

ol -- exception Overflow will be raised if Into_This_Stack is full
IS

A

®
L})
159 ©1986 EVB Software Engineering, Inc.
2y
vy
l"
‘I \A 262

A¥ 2N

L RN T SN AT S AL M A, R PRI 2
AN, d !’D $X !'- A l‘!.l ¥l v ‘ N fhey ol A!.!‘. WA t‘!'-‘»‘."!‘!t.“h‘.’:"""'#?“

g

%Y

Pud
.

gy
R

;&&
- 4(.\. AL A,

Ly

sy
s

sassss

RO
"

L
» AL

k4

@'y
LN MM
‘l‘.-.l

™

. o -
L N
Shn s

r \‘ »
A b

i

L4

s LR
A\

]
&
A X

L9 %

S
[SARA

LA
a“s

£3
b

2%

K
f\

o

procedure Pop (Top_Element : out Element ;
Off_This_Stack : in out Stack) ;

-- pop Top_Element off Off_This_ Stack:
-- exception Underflow will be raised if Off_This_Stack is empty

function Is_Empty (This_Stack : in Stack) retura Boolean ;

-- returns true if This_Stack is Eepty: false otherwise

funetion Is_Full (This_Stack : im Stack) returm Boolean ;

-— returns true if This_Stack is full; false otherwise

function Number_ Of Elements (In_This_Stack : in Stack) return Natural

-- returns the current number of elements in In_This_Stack:;
-- eero is returned if In_This_Stack is empty

function Top_Of (This_Stack : in Stack) return Element ;

-~ returns the top element in This_Stack:
-- exception Element_Not_ Found is raised if This_Stack is empty

function Peek (At_Element : 4in Natural ;
In_This_Stack : in Stack) returan Element ;

-- returns the nth element in In This Stack 1 <= n <= length

(L
R

S

(n is equal to At_Element). If At_Element is greater than the
current number of elements in In_This Stack, the exception
Element_Not_Found will be raised (note : Element_Not_Found will
also be raised if In_This_Stack is empty)

procedure Clear (This_Stack : in out Stack)

-- makes This_Stack an empty stack

function "=" (Left : ian Stack ; Right : im Stack) return Boolean :

returns true if
1. number of elements in Left is equal to number of elements
in Right, AND
2. values of elements in lLeft is equal to values of elements
in Right (i.e., in corresponding slots);
false otherwise

©1986 EVB Software Engineering, Inc.

DL L o b £ TR RS A
.!:l.n.l.:“.!.. " .. ~ K -I' .l.'r. ‘1.' M ‘-. a2l nl 1" ! N AN -.l ‘ld ™, < ,’I'

263

(oL, -r'.r,‘_-\'

£

nil !) QOO0 ()
iy '.,‘o'g.l'.ﬁ‘.?t‘:ﬁ‘:‘,&fn'.'n': t':‘.ﬂ.',n'!-‘,c-.--'f'u

ET)

z
L]

» »
el

“r} g

- ey e
..ﬂi?f

'l

PR
e

Py |
‘.._“._/-_' W,

.

ety

s ™
od

Xy

P

LA,

&“%Q?‘_‘.’.‘"

-

ﬂ"s"
' o

ﬁ.

'r_

]
hY
[S

’y

o~
L}
=

P -
Anl'.l ",l,'.:f'-"v’t’-
ORI R

g

i]
SA LS

3

-

i

A AR R e D T A

procedure Copy (This_Stack : 4in Stack
Into : out Stack) :

.
’

== copy the contents of one stack into another stack (Into);
-- will raise Overflow if the destination stack (Into) has
-~ length that is smaller than the number of elements in the
== source stack (This_Stack)

Underflow : exception ;

~— raised if a user tries to pop an element off an empty stack

Overflow : exception ;

-- raised if a user tries to push an element onto a full stack

Element_ Not_Found : exception :
-= raised if a user tries to find the top of an empty stack
== or Peek at an empty stack or peek at non-existent element

©1986 EVB Software Engineering, Inc.

264

-

‘ DODEON0
Wt te ity e

LR

et

pPrivate

Empty_Stack_Index : constant := 0 ;

DR~

A

type Contents_Of_ Stack is array (Positive range <>) of Element ;

s

type Stack (Maximum Length : Positive) is recozd
Top : Natural := Empty_ Stack_Index ;
] Contents : Contents_Of_Stack (1 .. Maximum Length) ;
R end recozxd ;
Rt -- Stack is initjally Empty (i.e., Top = Empty Stack_Index)

e ——

L, end Bounded_Stack ;

&

N - ©1986 EVB Software Engineering, Inc.

! -:3 265

» NI, ST % NN OIS Q
" ':lfo.".o:l?n:",n.lbe'.0.l!lf‘?:!lft!l."o.l'»fi"fd?e!l‘.fﬂ?fﬂﬁﬂpfﬂﬁl AR R KRR KM MR O X XM XA

. k g ! al. Mal _tay Sal ol ol taB CAle i ARe hEede dE e dhlbe it it
Yo 4
s
by

o 3.4.2 Stepwise Refinement of the Highest-Level
= Program Unit

-

package body Bounded_Stack is

This generic bounded stack package provides stack manipulation
operations neccessary for most applications where stack data
structure is needed. In building this package, we were striving
for the following: operations provided in this package must

be primitive and complete and sufficient.

A primitive operation is an operation which can NOT be
implemented effectively WITHOUT knowing the underlying
representation of a particular object (in this case our

object is STACK). By complete we mean that a user will find

that the following operations will be the ONLY operations

needed to manipulate a bounded stack in almost any application.
-~ Whenever neccessary, a user will be able to build other

~- operations based only on the operations provided in this package.

~- Written by Johan Margcono, reviewed by (in alphabetical order):
-=- B.D. Balfour, E.V. Berard, G.E. Russell

-= Author Revision Date Reason

== J. Margono 1.0 8 Jul 1985

-~ (c) 1986 EVB Software Engineering, Inc. g S
\

procedure Push (This_Element : in Element ;
Into_This_Stack : in out Stack) is separate

push This_Element onto the top of Into_This_Stack:
-~ exception Overflow will be raised if Into_This_Stack is full

procedure Pop (Top_Element : out Element ;
Off_This_Stack : in out Stack) is separate ;

-~ pop Top_Element off Off This_Stack;
-- exception Underflow will be raised if Off_This_Stack is empty

o
£

o

»y
4.
)

function Is_Empty (This_Stack : in Stack) returan Boolean is separate ;

-- returns true if Th's_Stack is empty; false otherwise

Ay

S]

function Is_Full (This_Stack : im Stack) returan Boolean 1is separate :

-- returns true if This_Stack is full; false otherwise

©1986 EVB Software Engineering, Inc.

266

g0
Q':‘)‘:‘n‘!'n'-'u.’

O
'n.l‘.l'v'l‘».

RN CCItR

R Ay T L o

N e -

I

I
il

4@

Y
LTl ot

L]

i N
St s s ()

5

)

@gb function Number Of Elements (In_This_Stack : in Stack)
retuzrn Natural is separate ;

-=- returns the current number of elements in In_This_sStack:;
-=- zero is returned if In_This_Stack is empty

function Top_Of (This_Stack : im Stack) return Element is separate

-— returns the top element in This_Stack:
-- exception Element_ Not_Found is Taised if This Stack is empty

function Peek (At Element : in Natural ;
In_This_Stack : in Stack) return Element is separate:

-- returns the nth element below the top element in In_This_sStack
-- (n is equal to At_Element). If At_Element is greater than the

-= current number of elements in In_This_Stack minus one, exception
-=- Element_Not_Found will be raised (note : Element_Not_Found will
== also be raised if In_This_Stack is empty)

procedure Clear (This_Stack : im out Stack) is separate ;

-- set This_Stack to be the same as an empty stack

o

j-"»
s'&‘.

* ©1986 EVB Software Engineering, Inc.

267

O KRR NI I KK
" Q'MN:’"‘ ['O.‘ "‘(‘l A .1 |Q '. 'x""l"’ V. s, n"i“ X ..0 u"‘u K '('.‘i’.!ﬂ‘. ‘«u ﬂ,'ﬁ i) '0‘:“'#\ o Q'a DA IR ‘l‘ W, ." .“l.‘ﬁt‘ .""“ i) ‘Q:f“.fﬂc!‘?“\\

L L o) e " o T O - TETN TR R KW TN TEW TN TAE

function "=" (Left : imn Stack ; Right : in Stack) return Boolean is @

NG -
oY \
_ -- returns true if :
’,::' == 1. number of elements in Left is equal to number of elements
] - in Right, AND
*,,J‘ - 2. values of elements in Left is equal to values of elements
oS - in Right (i.e., in corresponding slots):;
.q;' -- false otherwise
H' 0 -
‘yth ; ; .
‘*\-: ~- NOTE: This function is included in the body of the package (as
,Og' - opposed to being implemented as a subunit) because,
,::.. - according to section 10.1, paragraph 3 of the Ada
nhed - lLanguage Reference Manual, "The designator of a
(- separately compiled subprogram (whether a library unit
N - or a subunit) must be an identifier.”
DI -
R 2) -- Written by Johan Margono, reviewed by (in alphabetical ordex):
Lo -- B.D. Balfour, E.V. Berard, G.E. Russell
[} m -
" -- Author Revision Date Reason
Vo et - T R D D o s - aee- A —eeoeee
13: -- J. Margono 1.0 8 Jul 1985
:‘. -- B. Balfour 2.0 20 Feb 1986 removed restriction that
. - stacks must have same
:;‘:.ﬁ - length (bounds)
)] -—
Lo -= (¢} 1986 EVB Software Engineering, Inc. a
, — . .
y :-U') begin -- ="
-] return Left.Contents(l .. Left.Top) = Right.Contents(l .. Right.Top) :
5 end "=" ;
o=
R
o
o
o
’I
? d
o
)

2%
A
®
o o
» ©1986 EVB Software Engineering, Inc. -

N 268

" 0'0 W 0'0

5 l
(] " (] (]
!’. \‘. W .,c N :"' n'.‘x"'u‘t‘s‘ 200R ~'I‘:f|‘..|!:!h!'.'.t‘ t‘. a"‘t" BN 't‘.,t‘:' "‘ ’I‘o) '0 e a‘.‘t"‘t‘ QUAN R0 a'. Wittty N

T \i 3 p o g A AP gl el —ox sl sy TR

a @
' procedure Copy (This_Stack : in Stack ;
..‘.;z;: Into :. out Stack) 1is separate;

X -— copy the contents of This_Stack into another stack (Into);
,:o"‘: == will raise Overflow if the destination stack (Into) has
;l::", == length that is smaller than the number of elements in the
\ b == source stack (This_sStack)

:",'::: . end Bounded_Stack ;

2 R

1 . -"\;":)

Eg' ©1986 EVB Software Engineering, Inc.
()

Y 269

U . v YT TR n | PIEIIC N O R X] JUOUOUC A 0% g Uy 070 1) ity 8 g T B ATy
2‘:2,% Sl ‘1'}20'_!.023:1:»‘:0,‘:9?‘1', A R A A M R L .&'t:lf'a.i.‘n”!o‘.'t‘.!s’.fl'|f\';fi';'|'.'.s'ﬂl‘a!b‘:‘t‘:'l‘s'a‘o'a‘.‘a'-'ﬁ'-"e*,“',‘t'a"ah‘nh'm natadiglalt

separate
procedure Push (This_Element : in Element ;

(Bounded_Stack)

Into_This_Stack : in out Stack) is

push This_Element onto the top of Into_This_Stack:
exception Overflow will be raised if Into_This_Stack is full

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

Author Revision Date Reason

J. Margono 1.0 8 Jul 1985

(c) 1986 EVB Software Engineering, Inc.

begin
it

L4 - ﬂ.'y"\‘

-= Push

Into_This_stack.Tcp = Into_This_Stack.Maximum Length then

raise Overflow ;

else .

Into_This_Stack.Top := Into_This_Stack.Top + 1 ;
Into_This_Stack.Contents(Into_This_Stack.Top) := This_Element :

end if ;

end Push ;

. ©1986 EVB Software Engineering, Inc.

270

~»

e LW A

o

LN S0 %19, r,'o’. ', l..rt».v ma ' ¢, l':‘:..'o SR AN g’l s.l . '::":A I‘O‘.lel“»!l'o“ b '.Slla.. ‘I.l‘pel_p.l!ﬁ.‘ 8 Undl .0-“"“

-..“ 4. R
el e

M@ K

o
-

o

@5

-

. -

szzz:l)

e ool @ ﬁ

o‘:.‘ s

_@.,

separate (Bounded_stack) :
procedure Pop (Top_Element : out Element ;

’

Off_This_Stack : in out Stack) is

-- pop Top_Element off Off_ This_Stack:
~- exception Underflow will be raised if Off_This_Stack is empty

~— Written by Johan Margono, reviewed by (in alphabetical order):
-- B.D. Balfour, E.V. Berard, G.E. Russell

== Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985

-=- (¢) 1986 EVB Software Engineering, Inc.

begin -~ Pop
iz Off_this_Stack.Tcp = Empty_Stack_Index thcn
raise Underflow ;
else.

Top_Element := Top_Of (This_Stack => Off_This_Stack) ;
Off_This_ Stack Top := Off_ This _Stack. Top -1

é"&

end 4if ;

end Pop

R

©1986 EVB Software Engineering, Inc.

2N

> . —— : g i 5
P e ". O l‘v R e e e D N e R e i ORI ity L T

: separate (Bounded_stack)
Yoy function Is_Empty (This_Stack : in Stack) returnm Boolean is

returns true if This_Stack is empty:; false otherwise

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

Author Revision Date Reason

J. Margono 1.0 8 Jul 1985

(c) 1986 EVB Software Engineering, Inc.

2

L

"
IIIIIIIIIII=
[I I I I I |

,,.v‘::; begin -- Is_Empty
i N
ﬂa return This_Stack.Top = Empty_ Stack_Index ;

,. end Is_Empty

;:.:,‘ ©1986 EVB Software Engineering, Inc. @
a8

2 272

]
r S o AN WX T2 MOS0 0 b OO MO0 e, M0 191 3
O O e T R K A R R O R A A X D RTINS

separate (Bounded_Stack)
function Is_Full (This_Stack : inm Stack) retura Boolean is

-- returns true if This_Stack is full; false otherwise

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

== Author Revision Date Reason

J. Margono 1.0 8 Jul 1985

(c) 1986 EVB Software Engineering, Inc.

begin -- Is_Full

== check if top of stack is equal to length of stack
return This_Stack.Top = This_Stack.Maximum_Length ;

end Is Full ;

1 LYo
2O i

-

oL
EEREED

[3

ﬁ?&
1~ ﬁ"

X

©1986 EVB Software Engineering, Inc.

‘-“
-
e

.

273

B S e iy by O ANRNT ! 0 0 D DBOGOOOBOGCOOOMIEOOGIOO0000G000
e N R R T T A T et e it bttt ittt ateletels, ‘.'o‘!'o‘;‘l‘-'o‘»'r'm't'..’:‘

A

00,000
SR Tt

0
Gt‘t'a‘!

0?0‘

T e TSPV U EESRUNENSPT EARNKIATIRNMANBIENTAFI TSN LW Ve e T wRas W

separate (Bounded_Stack)
function Number Of_ Elements (In_This_Stack : in Stack) returnm Natural is

returns the current number of elements in In_This_Stack:
zero is returned if In_This_Stack is empty

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

Author Revision Date Reason

J. Margono 1.0 8 Jul 1985

(c) 1986 EVB Software Engineering, Inc.

S
i ":";'JJ

o i w m
13

]
A
5

s 7
Yo

P

2 .-:43-

- o

")
a':‘. N

== Number_Of_ Elements

return In_This_Stack.Top ;

end Number Of Elements ;

by ©1986 EVB Software Engineering, Inc.

274

&

O X AN, O AR U 0 g TG e y D) W) AOOAD OSOOAONOMSONON
"v'!’l.] »..: .l’p.l’.!l". i .I'a?!‘.’l'o .q!"n:'.o. 0."0"'!!“l.“089‘!.'!!..“0!"’.“!JS"Q’" 0".'3"'&“‘?‘!“1‘”! ..im.. e fq,‘!l.,"Qa..‘l;"'f‘:'.i‘h‘ph *"!"»“':‘?""?’:‘e"‘-"-‘i".'"‘

Ead WNEEETWEETIFWVIFUR T TN WE FINgEFEEFV-EFUVEFT PR ELV WALV S VG SN WA AW WL AR WAL AT T I AR e W S W=7 e

o
PO
e
%)
)
X
-‘)- o
]
QRN
' separate (Bounded_Stack)
Y function Top_Of (This_Stack : ia Stack) return Element is
&3
Lk -
\-Q -~ returns the top element in This_Stack:
o -- exception Element_ Not_Found is raised if This_Stack is empty
;;"i! == Written by Johan Margono, reviewed by (in alphabetical order):
::, == B.D. Balfour, E.V. Berard, G.E. Russell
B) - .
h‘ -- Author Revision Date Reason
& - wwmesetes $0092 22 < seenebebetenes Z202emebenas 0000000020202 2=seseseseves
‘:-';‘.' -- J. Margono 1.0 8 Jul 1985
(~= J. Margono 2.0 19 Mar 1985 Constraint_Error will not
" - ' be raised if pragma SUPPRESS
:.:: - is used
B -—
:l.' == (¢) 1986 EVB Software Engineering, Inc.
N -
®
i begin -- Top_Of
¥
wa if This_Stack.Top = Empty_Stack_Index then
o
» raise Element_Not_Found ;
¢
4
. else
. return This_Stack.Contents (This_Stack.Top)
,{j end 1if ;
" .
‘% end Top_Of ;
LY
%
I’
"
4
Y
g
" 3
é:'
@
.
>
*I
-
@
189 ‘fJ'-
‘) o
e ©1986 EVB Software Engineering, Inc.
A
\]
. 275

OATOAOME MR IO R MO M
.\'l:"l?v”.v'l.0‘0‘t,":a'i:e'éa’lﬂ'l::‘f

-,

l.
]
a

7,

(] r"l:h

LA | L
ArElS L

P

' r‘-"r"

l,}l
-{-)'r

¥

’

G Y

-

2}
»

= %
-

s

SR
I""‘l ‘lI 1

r

7

¥

«
;‘}5} d

11' ‘.I‘{l
5 G

-" A.' l‘. os

anl

s

".- u\n'\‘s*

|.'|

~
ot

separate (Bounded_Stack)

function Peek (At_Element

in Natural ;
In_This_Stack : in Stack) return Element is

returns the nth element below the top element in In_This_Stack
(n is equal to At_Element). If At_Element is greater than the
current number of elements in In_This_Stack, exception
Element_Not Found will be raised (note : Element_Not_ Found will
also be raised if In_This_Stack is empty)

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

Author Revision Date Reason

J. Margono 1.0
J. Margono 2.0

8 Jul 1985

19 Mar 1985 Constraint_Error will not
be raised if pragma SUPPRESS
is used

(c) 1986 EVB Software Engineering, Inc.

-= Peek
At_Element > In_This_Stack.Top then

raise Element_ Not_Found

else

return In_This_Stack.Contents(In_This_stack.Top = At_Element + 1)

end 1if ;

end Peek ;

©1986 EVE Software Engineering, Inc.

S,
oo

276

,ﬂ'.-,‘ 5 (,.y," o e,f;r' ot T '0'.& ()

ML P ol Sl " AL 'l- ..D I."I.‘l ‘ r .; n'ln ! :'0‘1 ‘-.l.:'.‘o. g‘t..‘l‘

.

...I'u L N u"

e

C3

s

ll

PR ek e e

v ‘,',

Nt L N O DN oy 4% e, Ve s % %) %05 0 0 ()
4 - -"r NLIEARIELRY i Dol dndnaidnliintidiaindadudiadinidiadn el '!':l?,‘

separate (Bounded_ Stack) :
procedure Clear (This_Stack : in out Stack) is

set This_Stack to be an empty stack
this is the same as if all elements had been popped off.

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

Author Revision Date Reason

J. Margono 1.0 8 Jul 1985

(c) 1986 EVB Software Engineering, Inc.

begin

~= Clear

re-assign stack top

This_Stack.Top := Empty_Stack_Index ;

end Clear ;

©1986 EVB Software Engineering, Inc.

2717

() ()
DRDATIROA IR

AL
A

Pt

WrAn

‘\.-o—--‘-"" Y R X

B

e] @R L I AT
i‘:‘rﬁ LR N e e

=

[
fl'd

‘i&‘

)

.o - W
-,

k)
L
t

separate (Bounded_Stack)
procedure Copy (This_sStack : in Stack ;
Into : out Stack) is

copy the contents of This_Stack into Into:;

will raise Overflow if the destination stack (Into) has
length that is smaller than the number of elements in the
source stack (This_Stack)

Written by Johan Margono, reviewed by (in alphabetical order):
B.D. Balfour, E.V. Berard, G.E. Russell

Author Revision Date Reason

J. Margono 1.0 8§ Jul 1985

(c) 1986 EVB Software Engineering, Inc.

begin
iz

== Copy
This_Stack.Top > Into.Maximum Length then

raise OQOverflow;

else == there is enough room to put the contents of

== This_Stack inte Into

Into.Top := This_Stack.Top;

Into.Contents(l .. This_Stack.Top) :=
This_stack.Contents(l .. This_Stack.Top):
end iZf;
end Copy

©1986 EVB Software Engineering, Inc.

N | " 0 W M) OYTILT) B Eg 370 N B DLW JOTOCTD NS DO
SN, ,g,._ A I R e A R A I S A R R DA TR Pttt e

278

K R0 0,070 0

.'. (z.

LA
Rt lnsh

8

". 3.4.3 Stepwise Refinement of the Other Program
9 Units

) None required.

.. F AL Io":'

]
~

~

@ 0 -‘v'«&

L ¢
59

%
o
-d
©
®
o
m
<
0]
»
%
o
‘
o
m
)
Q
3
®
o
3
3
a
5
o

279

() P BRI AT) J
?t‘q..l'q. (K] :I‘I%A‘t!"lh'l!"

- v
. \.\vd. F b

BOOOOOOO SO
A .?‘..v.‘.l.'.ls.‘f!"‘.'"’.!‘7"

3.4.4 Recursive Application of OOD

o None required.

O e or
e
o,

4

__.....
L2 2

Y
@

P
e

R RN
h &
Ty 5k

g
.&‘

W3
L & -
ATk gw o

S0

s
-

©1986 EVB Software Engineering, Inc. @

280

1 @

-~

()

() .&»‘

Wby OIONG Al ok
A N K N R S KR KR KR XA KN KA

Yy . L} L))
il ettt riilalntntadn i lulalalnint ety

Wy
Y
S Test Programs
['
v X with Text_I0 ;
¥ 635 with Bounded_Stack :
! procedure Bounded_Stack_First_Test is
W -
;Q --— This procedure is a driver to test the bounded stack package.
§~ -- It allows all operations to be invoked in any order.
fa - .
' -- Written by J. Margono, and reviewed by B. D. Balfour, E. V. Berard,
r' -- and G. E. Russell.
K\ ==
44 -~ Author Revision Date Reason
4..' - SEpeRmmeaes 2000000000200 eodRakbonamesas 0 Samesas 0000009009002 2weoew
k} -- J. Margono 1.0 8 Jul 1985
{' -~ J. Margono 2.0 20 Feb 1986 to make it uniform with
v - all other first tests
, -—
h -=- (c) 1986 EVB Software Engineering, Inc.
¥, -
'
)
Al
e type Command is
: (Clear, -- a stack
;.k Copy, -=- a stack to another stack
%- Empty, -- is a stack empty?
ﬁ# Equal, -— are two stacks equal?
» Elements, -- in a stack
4 Peek, -- at an element in a stack
R q;y Pop, -= an element off a stack
.? Push, -- an element into a stack
:' Top, -=- top element of a stack
ﬂ‘ View, . -=- a stack
a,
p: -=- command on the test program
= Quit -- quit the test
X) 2
Ll

package Command IO is new Text_IO.Enumeration_IO(Enum => Command);
o package Integer_IO is new Text_IO.Integer_ IO(Num => Integer) ;

package Bounded is new Bounded_Stack(Element => Integer)
-q -- Integer is chosen simply to represent an enumeration data type
. -—
Q . function "=" (Left : in Bounded.Stack ;

Right : in Bounded.Stack) retuzra Boolean

, renames Bounded."=" ; -- makes "=" directly visible
:ﬁ type Access_To_Stacks is access Bounded.Stack :
;‘ type Array Of_Stacks is array (Positive range <>) of Access_To_Stacks ;
nd
e Number_Of_Stacks : Positive ;
@
v§ o procedure Display (This_Stack : ia Bounded.Stack) is separate ;
5 e
o ©1986 EVB Software Engineering, Inc.
. 281

L
(N
K
)

OG0 B 0 OO0] O 00 NG % A RIS GUCANTUG
':’?:,“l:‘.io"i:'!!".l.‘ .'?I:'.'»‘.‘«‘Ju‘:h‘!'n'!‘cﬂ.'l‘.h !l.‘!h.‘!"'?'t‘th‘:‘""k‘!‘n’:’i‘:ﬁ‘!‘A‘:'l"'l.:'iq:'. '#n'i'.|‘l:\"‘a!“mb.¢"‘3’.*;!:’;'!‘1"« 0'?.‘«‘.’&”&‘?“'3‘:‘.! L e

M) *

-- displays the contents of a given stack

;'!' begin -~ Bounded_Stack_First_Test @
:.‘:;o;i Get_Number_ Of_Stacks:
gl loop
£,44,Y
N begin
)
! .
"') Text _IO0.Put ("How many STACK(s) do you need? ") ;
B Integer_I0.Get (Item => Number_ Of_ Stacks) ;
5:". exit Get_Number_Of_ Stacks ; -- when there is no error
¥
;::" exception
t’!:'l: when Text_IO.Data_Error =>
;"» Text_I0.Skip_Line ;
4 Text_TIO.Put_Line("Enter a POSITIVE number only!!!™)
",
A
':‘ \-j when Constraint_ Error =>
. i Text_IO.Put_Line("Enter a POSITIVE number only!!!")
W
A wvhen others =>
Py Text IO.Put_Line ("Unknown exception raised. Re-enter.®) ;
‘;‘3 end ;
2t
o end loop Get_ Number Of Stacks
4 > declare
;::.:. Stacks : Array Of_Stacks(l .. Number_ Of_Stacks) ; a
b
R
;::"o subtype Stack_Range is Natural zrange 1 .. Number_ Of_ Stacks ;
! Stack_Index : Stack_Range := 1 ;
ooy Stack_Size : Positive ;
.})‘. User_Command : Command ;
..:;‘ User_Element : Integer ;
sy Stack_Number : Positive ;
::":', Second_Stack_Number : Positive ; -- used in Copy and "="
n':: Element_Index : Positive ; -- used in Peek
(G
; begin
1
A
JC Get_Stack_Sizes:
s loop
\.‘!; begin
®
o Text_IO.Put ("Enter size for stack #") ;
ey Integer_IO.Put (Iter => Stack_Index, Width => 0) ;
A Text_IO.Put (™ : ™) ;
(3~ Integer_IO.Get (Item => Stack_Size) ;
BN,
4% == declare the actual stack
L, Stacks(Stack_Index) :=
B
)
O ©1986 EVB Software Engineering, Inc.
g
..‘:;‘
LY 282

r)
]

" ¢] p \
i I S IS T TR NI AN BN T AR] : AONOBONOSONIOIND
e 3 R T L it s e 1 T G B N R T B s e T T e N,

4

2

i .;
]

el

Y
)

-

v

)
L

Y

.
’

new Bounded.Stack (Maximum_Length => Stack_Size)

Stack_Index := Stack_Index + 1 ;

exception
when Text_ IO.Data_Error =>
Text_IO.Skip_Line ;
Text_IO.Put_Line("Enter a POSITIVE number only!!!")

when Constraint_Error =>
Text_IO.Put_Line("Enter a POSITIVE number only!!!"™)

when others =>
Text_I0.Put_Line("Unknown exception raised. Re-enter.")

end ;
end loop Get_Stack_Sizes ;

Test_Stack :
loop

begin

Text_TIO.Put_Line("Selections :") ;
Text_IO.Put_Line(™ STACK") ;
Text_IO.Put Line(" Clear, Copy,
Text_IO.Put_Line (" Elements, Peek, Pop,
Text IO.Put_Line(” Top, View”)
Text_I0.Put_Line(™ TEST_PROGRAM") ;
Text_IQ.Put_Line("® Quit®)

Text_IO.Put ("Enter selection : ") ;

Empty, Equal;"™)

Push, ")

Command_IO.Get (Item => User_Command) ;
exit Test_Stack when User_Command = Quit ;
case User_Command ias

when Push =>
Text_IO.Put ("element : ") ;
Integer_I0.Get (Item => User_Element)
Text_IO0.Put (“stack (1-")
Integer_IO.Put (Item => Number Of_ Stacks, Width => 0)
Text IO.Put(™) : ") ;
Integer_IO.Get (Item => Stack_ Number) ;

Bounded.Push
(This_Element => User_Element,
Into_This_Stack => Stacks(Stack_Number) .all) ;

when Pop =>
Text_IO.Put ("stack (1-") ;
Integer_ IO0.Put (Item => Number Of Stacks, Width => 0)
Text_IO.Put(™) : ") ;
Integer_IO0.Get (Item => Stack_Number) ;

©1986 EVB Software Engineering, Inc.

+3%

h.‘,/n

283

SO TATE T N 0 : I ([! RO
N it A e 0 R R A N i b e i h TR NN R N AN

exit Get_Stack_Sizes when Stack_Index = Number Of_Stacks ;

.
’

. '

R

e

v.

i';:zc

" .1: Bounded.Pop (Top_Element => User_Element,

{-..4. Off_This_Stack => Stacks(Stack_Number) .all) ;

.-:‘ o Text_IO.Put ("Top element was ") ;

1y Integer_IO.Put (Item => User_Element, Width => 0) ; @
. Text_IO.New_Line ; :
AL !

o when Empty =>
el Taxt_IO.Put ("stack (1-") ;

:.‘,‘ Integer_IO.Put (Item => Number_ Of_Stacks, Width => 0) ;
o:.:!; Text_IO.Put(™) : ") ;

:) Integer_ I0.Get (Item => Stack_Number) :

X if Bounded.Is_Empty

o (This_Stack => Stacks(Stack_Number).all) then
;." Text IO.Put_Line("That stack is empty.") ;

e else

4',::5& Text_IO.Put_Line("That stack is NOT empty.")

: " end if ;

ey

Wi when Elements =>

\\?‘; Text_IO.Put("stack (1-") ;

}:Jo:* Integer_ IO.Put(Item => Number_ Of_Stacks, Width => 0) ;
}'éw Text_IO.Put(™) : ") ;

' Integer_IO.Get (Item => Stack_Number) ;

1088 Text_ IO.Put ("Number of elements in that stack is ") ;
‘ f:{'_- Integer_IO.Put

S , : (Item => Bounded.Number_ Of_Elements

.3 (In_This_sStack => Stacks(Stack_Number) .all),
K- Width => 0) ;

! Text_IO.New_Line : @
-~

_'.:' when Top =>

2‘1 Text_IO.Put ("stack (1-") ;

N \.‘: Integer_ IO.Put (Item => Number_Of_Stacks, Width => 0) ;

™

Text_IO.Put(™) : ") ;
Integer _I0.Get (Item => Stack_Number) ;

o

Text IO.Put ("Top element is %) ;
Integer_ IO.Put
(Item => Bounded.Top_Of
(This_Stack => Stacks(Stack_Number) .all),
Width => 0) ;-
Text_IO.New_Line ;

o
‘-<-‘L

_
ot

when Peek =>
Text_ IO.Put ("stack (1-") ;
Integer_IO.Put(Item => Number_ Of_Stacks, Width => 0) ;

-.} -

P

by Text _IO.Put(®) : ") ;
° Integer IO.Get (Item => Stack_Number) ;
K%y Text_IO.Put ("Number of elements in that stack is ") :
e Integer_I0.Put
~',§{ (Item => Bounded.Number_ Of_Elements
‘e (In_This_Stack => Stacks(Stack_Number) .all),
(<. Width => 0) ;
Y Text_IO.New_Line ;
Y c
0 ©1986 EVB Software Engineering, Inc.

oy 284

) AOAG ¥ IOCK GV e USANI000D00 SO X 0y -t 1 (RX] QVGNIQ UK
»ﬂ"fq’l‘-n"!9"’@"‘.&”‘\}“‘—i‘ OIS O TR XN O RSN TR X RO O TOUOO RN

! Text_IO.Put ("which element? ") ;

t&:.' Integer_IO.Get (Item => Element_Index) ;

§'.c'* %‘ Text_IO.Put ("Peeked element is ") ;

) Integer_IO.Put

WAy (Item => Bounded.Peek

:.:l| . (At_Element => Element_Index,

i,'.:, In_This_Stack => Stacks(Stack_Number) .all),
Ik Width => 0) ; |
::,:: Text_I0.New_Line ;

'j when Equal =>

:.':“ Text_IO.Put("first stack (1-") ;

‘c" 3 Integer_IO.Put (Item => Number_ Of_ Stacks, Width => 0) ;

Text_IQ.Put(™) : ™) ;
Integer_IO.Get (Item => Stack_Number) ;

e
{_ Text_IO.Put("second stack (1-") ;
- Integer_IO.Put (Item => Number Of_ Stacks, Width => 0) ;
Y Text_IO.Put(®) : ") ;
) “§ Integer_IO.Get (Item => Second_Stack_Number) ;
:: if stacks(Stack_Number) .all =
' Stacks (Second_Stack_Number) .all then
Text_IO.Put_Line("Those stacks are equal.") ;
_:* else -
- Text_IO.Put_Line("Those stacks are NOT equal.") ;
éj-: end if ;
kJ when Clear =>
’] Text_IO.Put ("stack (l=") ;
'; R Integer_IO.Put (Item => Number Of_ Stacks, Width => 0) ;
R Text_IO.Put(™) : ") ; 4
b Integer_IO.Get (Item => Stack_Number)
'fs. Bounded.Clear (This_Stack => Stacks(Stack_Number) .all) ;
‘D" when Copy =>
o Text_IO.Put("source stack (1-") ;
z:igg. Integer_IO.Put (Item => Number_Of_Stacks, Width => 0) ;
:‘:.! Text_IO.Put (™) : ") ;
d Integer_IO.Get (Item => Stack_Number) ;
N
e Text_IO.Put("destination stack (1-") ;
ool Integer_IO.Put (Item => Number_ Of_Stacks, Width => 0) ;
K4 Text_IO.Put(™) : ") ;
:g Integer_IO.Get (Item => Second_ Stack_Number) ;
)
Y Bounded.Copy
bh 1 (This_Stack => Stacks(Stack_Number) .all,
s Into => Stacks (Second_Stack_Number) .all)
Wy - -
0
a': i when View =>
:l: Text_IO.Put ("stack (1-") ;
oy Integer_IO.Put (Item => Number_Of_Stacks, Width => 0) ;

»
BT, Text_IO.Put(") : *) ;
Integer_IO.Get (Item => Stack_Number) ;

W

o I ©1986 EVB Software Engineering, Inc.
;::'b g9

J...'

5 285

B

“1. G, Ve b Ty, Ty LAMCUMTOMOA M (RO IOV ! ¢ J 3 X Fratha ¥ :
S : B KO gt . 3, y 50 ORI DS
!‘-t%". !-,‘!"’v l:«xl",;‘t’: l';‘i&%;‘ V'o‘l" Jléq’!‘ga} !-! |"‘.Q3.°;:7&?l'n"i‘!’\la;‘I‘l‘.“qf“ﬁi"lG.“'Q‘i"’i'Q!l'lfﬁ“ﬁ’?b:“gfpl"!q,‘ g,'.l*;tlgq:tfm:l?q,f“g.,j'g?ﬂal_’.tt}.t"d’t.g6.,€t§g‘0’q“?», _," Ny ,i"‘g‘l‘. 'l'

TRRTE TEETEPL TS T S [AT TP

+dg

o

., g

RAY

o

oy

4

@
_;i.%! Display(This_Stack => Stacks(Stack_Number).all) ;
o when others =>

iy o Text_I0.Put ("This command : ") ;

w Command_I0.Put (Item => User_Command) ;

;:'1 Text_IO.Put_Line(" is not implemented.™} ;

W

’!'% end case ;

1

a‘:" exception

'i when Bounded.Overflow =>

,-:\ Text_IO.Put_Line ("OVERFLOW was raised.”") ;

f& when Bounded.Element_ Not_Found =>

{ Text IO.Put_Line ("ELEMENT NOT_FOUND was raised.”™) :

B

::::' when Bounded.Underflow =>

"'c.:: Text_IO.Put_Line ("UNDERFLOW was raised.”) ;

)

"::" when Text_IC.Data_Error =>

"- Text_IO.Put_Line("Incorrect command. Reenter."”) ;

_'" when others =>

Koy, Text_IO.Put_Line("Unknown exception raised. Reenter.") ;
"y .

o, end ;

R

: end loop Test_Stack ; : ' @
wle

v

:‘:l.' end ;

y

AL exception

o when others => _

A Text_IO.Put_Line("Unknown exception reached the main program.") ;
i .;. Text IO.Put_Line ("PROGRAM EXECUTION IS TERMINATED.") ;

M,

)

t:::l end Bounded_Stack_First_Test ;

o

A i
) !
X

@

a0

e ©1986 EVB Software Engineering, Inc. %’

oy 286

A2, |

JE—
F Y |

[as

LA AT A e

(o

it

Folut "
oo

5555

w =
0 o

separate (Bounded_Stack_First_Test)
procedure Display (This_Stack : in Bounded.Stack) is

-- displays the contents of a given stack

-- Written by J. Margono, and reviewed by B. D. Balfour, E. V. Berard,

-- and G. E. Russell.

-= Author Revision Date “"Reason

-= J. Margono 1.0 22 Jan 1986

-= (c) 1986 EVB Software Engineering, Inc.

begin -- Display
Text_IO.Put_Line("Stack contents :") ;
Display_Elements:
for Index in 1 .. Bounded.

Number Of Elements
(In_ This Stack => This_Stack) loop

Integer_ IO0.Put (Item => Bounded.
Peek (At_Element => Index,
In_This_Stack => This_Stack),
Width => 0) ;
Text_IO.New_Lline ;
end loop Display Elements :

end Display :

©1986 EVB Software Engineering, Inc.

287

L) g Y W A X
IR L R o R e e O R D S P

it NI

with Bounded_Stack :
with Text_ IO ;
procedure Second_Test_Of_Bounded_Stack is

== This program unit shows how a stack data structure can be used to

-- evaluate simple POSTFIX expression (also known as REVERSE POLISH).
-- Second_Test_Of Bounded_Stack will first prompt the user for a file
-- name of a data file that contains postfix expression separated by

-- carriage returns. These expressions should only contain single-

== digit numbers and the following operators: "+", "=", "*% e/ /w and
== "$" (exponentiation). Also, there should not be any SPACES between
-~— operators or operands. Examples of valid postfix expressions

- 1. 98+42*/89-+ (i.e., (.9+8)/(4*2))+(8=-9))

- 2. 344+ (i.e., (4+4)*3)

-- Second_Test_Of_ Bounded_Stack will output the following after each
== successive iteration through the main loop (see code below):

== CURRENT SYMBOL read from the input, VALUE OF LEFT OPERAND,

== VALUE OF RIGHT OPERAND, and CONTENTS OF STACK.

-=- Written by Johan Margono and reviewed by B. Balfour, E. Berard,
-- and G. Russell.

-= Version Author Date Reason

- 1.0 J. Margono 8 Jul 1985

== (¢) 1986 EVB Software Engineering, Inc.

package New_Stack is new Bounded_Stack (Element => Integer) ;
package Number_ IO is new Text_IO.Integer_ IO (Num => Integer) ;

Operand_Stack : New_Stack.Stack (Maximum Length => 80) ;
Left COperand : Integer := 0 ;
Right_Operand : Integer := 0 ;

Symbol : Character ;

Result : Integer := (;

File Name : String (1 .. 80) ;
Length : Natural ;

My _File : Text_IO.File Type :

procedure Display Contents Of (This_sStack : in New_Stack.Stack) is
-- displays the contents of a stack showing stack elements from
== top to bottom

begin -~ Display_ Contents_Of

for Element Index in 1 ..
New_Stack.Number Of_FElements
(In_This_Stack => This_Stack) loop

Number_ IO.Put (Item => New_Stack.Peek (At_Element => Element_Index,
- In_This_sStack => This_Stack),
Width => 3) ;
Text IO.Put("™ ")

end loop ;

©1986 EVB Software Engineering, Inc.

L

~:

N

J:::v" end Display_Contents_Of ;

R

:i'“- @ function Symbol_To_Natural (Symbol : im Character) return Natural is
o -- Returns the integer representation of a character which

RKeY -~ represents a decimal digit.

e begin -- Symbol_To_Natural

A

;’%; return Character'Pos (Symbol) - Character'Pos('0') ;

" 0

,‘) end Symbol_ To_Natural ;

t‘"-.'

::'::o ..

KW . function Is_Digit (Symbol : iam Character) return Boolean is
s':‘l: -— Returns True if the argument is a character which represents
N -- a decimal digit.

ol begin -- Is_Digit

K 2t return Symbol im '0' .. '9' ;

oy
i end Is_Digit ;
oo =9
i
° begin -- Second_Test_Of_Bounded_Stack
\ :‘\: Text_iO.Put (Item => "Enter file name : ") ;
i Text_IO.Get_Line (Item => File Name, Last => Length) ;
:'\. Text_I0.Open (File => My File,
‘ Mode => Text_IO.In_File,
wh Name => File_Name(l .. Length)) ;
4 ‘]
‘e while not Text_IO.End_Of File (File => My File) loop
o0 -
"
$; -= display header
v Text_IO.New_Line ;
S Text_IO.Put (Item => "SYMBOL") ;
. Text_IO.Set_Col (To => 15) ;
< Text_IO.Put (Item => "LEFT OPERAND") ;
\ Text IO.Set_Col (To =>-30) ;
A Text_10.Put (Item => "RIGHT_OPERAND") ;
PN Text_IO.Set_Col (To => 45) ;
K Text_IO.Put (Item => "RESULT")
Yy Text_IO.Set_Col (To => 60) ;
L] Text_IO.Put_Line (Item => "STACK") ;
M L
~ while not Text_IO.End_Of_ Line(File => My File) loop
,v. Text_IO.Get (File => My File, Item => Symbol) ;
® if Is Digit(Symbol => Symbol) then
'“' New_stack.Push(This_Element => Symbol To_Natural (Symbol),
‘i Into_This_Stack => Operand Stack) ;
o : :
‘\: else -- symbol must be an operator
‘ .~ New_sStack.Pop (Top_Element => Right_Operand,
= e
184 ’\: ','n-".‘u:'
v ©1986 EVB Software Engineering, inc.
) .
it)
ol
a5 289
o

AGAGBONON U X 0 S 00 W) T BTN i) RI0R0 OOV OOUCOMMINK, 0 ¥, 0, 3 \
«"."-‘f‘@',"l"‘l‘:’l’. '.'n‘{'n W ""t‘é’o i‘v"’r‘?‘i’i‘?“n‘:’t‘?l“"a A t.‘!l:‘\f':t"oe‘!tei‘o!Q'lf"ﬁ."‘n!".’l'c.b‘o’l’o!l':‘l‘:‘i‘:‘.l‘;'c‘!'o‘!.t‘.'o‘n‘t‘! ’!‘l‘t‘o‘”"!h‘!‘t‘ﬁ‘, -'t’:'a‘-‘ﬂ! Al‘s'?":\'.‘r\l

ANRENMENRNMNMAMBLUUNLETUSRS U LPRITRUNEAVV WIS Tt T8 T

Off_This_Stack => Operand_Stack)
New_Stack.Pop (Top_Element => Left_ Operand,
Off_This_Stack => Operand_Stack) :

case Symbol is

when '+' =>
Result := Left_Operand + Right_Operand ;

when '-' =>
Result := Left_Operand - Right_Operand ;

when '*' =>
Result := Left_ Operand * Right_Operand :

whean '/' =>
if Right_Operand /=) then

Result := Left_Operand / Right_Operand :
else

Result := 0 ;
end if ;

when 'S$' =>
Result := Left_Operand ** Right_Operand ;

when others =>
avll ;

. end case ;

. New_sStack.Push (This_Element => Result, QE!
K Into_This_sStack => Cperand_Stack)
"'-;
F’% end if ;
Pt Text_I0.Put (Item => Symbol) ;
Lo Text_IO.Set_Col (To =>15) ;
D) Number_I0.Put (Item => Left_Operand, Width => 3) ;
N Text_I0.Set_Col (To => 30) ;
-ﬁq Number_IO.Put (Item => Right _Operand, Width => 3) :
e Text_IO.Set_Col (To => 45) ;
o Number_IO.Put (Item => Result, Width => 3) ;
R Text _I0.Set_Col (To => 60) ;
® Display Contents_Of (This_Stack => Operand_Stack) ;
A Text_IO.New_Line ;
PO
RS end loop :
W\,
L]
N Text_I0.Skip_Line (File => My File) ;
2EAY . New_stack.Pop (Top_Element => Result,
o Off_This_Stack => Operand_Stack) ;
WS Text_IO.Put (Item => "Final result : ") ;
#QQ Number_ IO.Put (Item => Result) ;
o Text_IO.New_Line ;
[. v
:j -~ re-initialize operands and result
a lLeft_Operand := 0 ;
“x; Right_Operand := 0 ; égﬁ
‘ M "
Pl
s ©1986 EVB Software Engineering, Inc.
>
it 290

- - g LRy TG R A LA OO W PR ORI T R AOON
AR A IO RTINSO IO X DR D DN Do N

Ve R . - A LY
D T T R AR

SOFTHRRE TECHROLOGY FOR RDRPTRBLE RELIABLE SYSTEMS
(STARS) WORKSHOP MARCH 24-27 1986(U)> NAVAL RESERECH LARB
WRSHINGTON DC MAR 86

Fr/6 12/8

474

Ml e i

56 32 \

=ikr
Ll

|

i
I

» e
[oo]

|

)
(3

M

i

[

(3 MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU oF STANDARDS-1963-A

- - - .‘.—v’;.‘ P
TE T i N -

[, ,’-'!‘-

A
“’! <‘E

OO
EQ’eO'IQ, ‘5.' Q“ 3

O S S
R R A AKX) .
(RN AN HACLKC RN SO AN OO0 .’ AN Qﬁ'}i’é 3 y 10O LTI e T i
DU " At ." KHKR n’l‘ *a‘:’:"'l.‘ﬁt‘??f‘h:‘flt‘.,tfl’}t&‘k‘g?t':fA':a:‘t.:‘:*:":t:': Wyt

: Sabebeirndd, A .

Result =0 ;
end loop ;
Text_I0.Close (File => My File) ;

end Second_Test_Of_Bounded_stack ;

6

I

L
4.)'\"

e ©1986 EVB Software Engineering, Inc.

291

DY) i POOGO ba't, o
Mo e e T et BT R b b i e b Baget b

(] O] X
,r‘.«f!‘:“ ! ,J’-',‘.“;‘!"a"ﬁ".‘ﬂ‘s.l‘gl‘b"’k‘t‘.\.

N

)

ety

X
IR

OO
-"!n‘?!,‘fu‘!;9,‘.‘&';"‘.%‘,"

......

P Bibliography

C) [EVB, 1985]. EVB Software Engineering, An Object Oriented Design Handbook for Ada
. Software, EVB Software Engineering, Rockville, Maryland, 198S.

2.: [Knuth, 1973]). D.E. Knuth, The Art of Computer Programming, Volume !: Fundamental
Algorithms, Second Edition, Addison-Wesley, Reading, Massachusetts, 1973.

o'v) @
o ©1986 EVB Software Engineering, Inc.

PR 292

e

(%) .
L] 0 (LX)
potl"‘I"‘:‘Q’.,‘l‘l“l'.“'.‘l‘

R § 4 ¢ WU W AN XTIV LMWL A li gt ALSDANROAICIAONE
D D Y D D A DN S D NS G O SO O R O Vit bR e el e

» Bibliography

W {Alexandridis, 1986]. N.A. Alexandridis, “Adaptable Software and Hardware: Problems

ﬂ’:' and Solutions, ” Computer, Vol. 19, No 2, February 1986, pp. 29 - 39.

1"

:: [Bauer and Wossner, 1982]. F.L. Bauer and H. Wossner, Algorithmic Language and

oy Program Development, Springer-Verlag, New York, New York, 1982.

;:" Blank and Krijger, 1983]. J. Blank and M.J. Krijger, Editors, Software Engineering:

-{u. Methods and Techniques, John Wiley & Sons, New York, New York, 1983.

PU)

3% [Boar, 1984]. B.H. Boar, Applications Prototyping, John Wiley & Sons, New York, New

;Lc York, 1984

%" [Boehm-Davis and Ross, 1984]. D. Boehm-Davis and L.S. Ross, "Approaches to

b Structuring the Software Development Process," General Electric Company Report

? Number GEC/DIS/TR-84-B1V-1, October 1984.

00 [Booch, 1982]. G. Booch, "Object Orienwed Design,” Ada Lerters, Vol. 1, No. 3, March-

April 1982, pp. 64 - 76. _

)

Qe [Booch, 1983] G. Booch, Software Engineering with Ada, Benjamin/Cummings, Menlo
g

b4 Park, California, 1983 _

e

39:; [Booch, 1985]. G. Booch, "Dear Ada," Ada Lerters, Vol. IV, No. 6, May-June 1985, pp.

" @ 21 - 26.

X jad

o [Campos and Estrin, 1978]. LM. Campos and G. Estrin, "SARA Aided Design of

:g ?ggtsware for Concurrcnt Systcms," in AFIPS Conference Proceedings, Vol. 47,

]

)

D [Dijkstra, 1968]. E.W. Dijkstra, "Structure of the THE'-Multiprogramming System,"

‘3:: Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346.

A

::E [DOD, 1978]. Department of Defense Requirements for High Order Computer

:‘,:. Programming Languages: "Steeiman”, NTIS Order Number ADA059444, 1978.

!

(DOI, 1981]. British Department of Indudtry, Report of the Study of an Ada-Based System

::: Development Methodology, Department of Indudtry (UK), 1981.

n

! [EVB, 1986] EVB Software Engineering, An Object Oriented Design Handbook for Ada

:‘: Software, 1985

l‘a .

e (Freeman and Wasserman, 1982]). P. Freeman and A. 1. Wasserman, Sofrware

o Development Methodologies and Ada, Department of Defense Ada Joint Program

: Office, 1982.

::: [Goguen, 1986] J.A. Goguen, “Reusing and Interconnecting Software Components,”

: Compuzer, Vol. 19, No. 2, February 1986, pp. 16 - 28.

PR

" e ©1986 EVB Software Engineering, Inc

N

i 293

.~ ‘?'?J"';4‘,:;1‘?:‘"‘,',?‘“‘ . O - ; :4.1' C' h‘g i‘-\ i‘» 6 E 4+ A" ‘,“*‘nfi‘\‘..‘_t’giﬂ"l’gi"a' K) l“ll kX A) 5 l N L. ' ‘r "

pX

o

BN

o [Hanson, 1983]. K. Hanson, Data Structure Program Design, Ken Orr and Associates,

N . Topeka, Kansas, 1983.

* %
LAl [Hibbard et al, 1983]. P. Hibbard, A. Hisgen, J. Rosenberg, M. Shaw, and M. Sherman, :

- Studies in Ada Style, 2nd. Edition, Springer-Verlag, New York, New York, 1983.

. tj' (IEEE, 1983). IEEE, /EEE Standard Glossary of Software Engineering Terminology,

g1 The Institute of Electrical and Electronic Engineers, New York, 1983.

& [Jackson, 1983]. M. Jackson, System Development, Prentice-Hall, Englewood Cliffs,

‘P New Jersey, 1983,

1

":‘, {Jackson, 1985]. M.IL Jackson, "Developing Ada Programs Using the Vienna

_ Development Method (VDM)," Software Pracrice and Experience , Vol. 15, No. 3,

M ? March 1985, pp. 305 - 318.

KX

i {Jones, 1980]. C.B. Jones, Software Development: A Rigorous Approach, Prentice-Hall,

;::;: Englewood Cliffs, New Jersey, 1980.

)

-.;::.‘.'; [Jones, 1983]. T.C. Jones, Editor, Tutorial: Programmer Productivity: Issues for The

1:‘\ Eighnes, IEEE Catalog Number EHO186-7, Computer Society Order Number 391.

'.5 [Kernighan and Plauger, 1978]. B.W. Kernighan and P.J. Plauger, The Elements of

N ¢ Programming Style, 2nd Ed., McGraw-Hill Book Company, New York, New

0 York, 1978.

Loey , :

: ‘:," [(Knuth, 1973]. D.E. Knuth, The Art of Computer Programming, Volume 1/Fundamental

oy Algorithms, 2nd Ed., Addison-Wesley, Reading, Massachusetts, 1973. -
o (Knuth, 1974] D.E. Knuth, "Structured Programming with GOTO's", Current Trends in ‘

% Programming Methodology Vol. 1, Prentice-Hall, Englewood Cliffs, New Jersey,
. 1977
o

o

5’ [Ledgard, 19751 H.F. Ledgard, Programming Proverbs, Hayden Book Company,

“1'-' Rochelle Park, New Jersey, 1975

&

oy [Masters and Kuchinski, 1983]. M.W. Masters and M.J. Kuchinski, "Software Design
Q‘" Prototyping Using Ada," Ada Lerters, Vol. II, No. 4, January-February 1983, pp.
W 68 - 75.

. [Myers, 1976]. G.J. Myers, Software Reliability: Principles and Practices, John Wiley &

{" Sons, New York, New York, 1976.
)

[Myers, 1978]. G.J. Myers, Composite/Structured Design, Van Nostrand Reinhold, New
York, New York, 1978.

[Newsted et. al, 1981] P. Newsted, W. K. Long, J. Yeung, "The Impact of Programming
Styles on Debugging Efficiency”, ACM SIGSOFT Software Engineering Notes
,Vol. 6, No. §, 1981

[Nissen and Wallis, 1984]. J. Nissen and P. Wallis, Porabilitcy and Style In Ada,
Cambridge University Press, Cambridge, United Kingdom, 1984.

O | @ BB

“ ©1986 EVB Software Engineering, Inc.
g

o 294
®

-
Ny
i

Dl
:':!‘fv

OO RN
T ke gt

e Sy % ; g OO0 0 QORI
Ll i i G T Lt by AR AR AN ,‘5""‘!""‘:.:':‘!.C‘S'ﬁ‘!'l.,'ﬁ‘!.,‘"I‘:‘l’:’l‘a"’:“-’u““&'ﬁ‘l'i‘.A'..*."-"““) 00

M N

e v Ty wmmmw
yte
Moy

A (Parnas, 1972]. D.L. Pamnas, "On the Criteria To Be Used in Decomposing Systems Into
by, Modules,” Communications of the ACM, Vol. §, No. 12, December 1972 Pp.
SO - ,
] @: 1053-1058.

[Ross et al, 1975]. D. T. Ross, J. B. Goodenough, and C. A. Irvine, “Software
! Engineering: Process, Principles, and Goals," Computer, May 1975, pp. 65 - 75.

[St. Dennis et al, 1986] R. St. Dennis, P. Stachour, E. Frankowski, and E. Onuegne,

SRA

“Measurable Characteristics of Reusable Ada Software,” Ada Lerters, Vol. VI, No.
2, March, April 1986, pp. 41 - 50.
o [Shankar, 1982]. K.S. Shankar, "A Funtional Approach to Module Verification," JEEE
.gg Transactions on Software Engineering, Vol. SE-8, No. 2, March 1982, pp. 147 -
‘ 160.
X
."' .
fo! [Wirth, 1971]. N. Wirth, "Program Development by Stepwise Refinement,”
o Communications of the ACM, April, 1971 pp. 221 - 227. Reprinted in E.
&9 Yourdon (ed), Writings of the Revolution, Yourdon Press, New York, New York,
s 1982,
7
Y
o [Yourdon and Constantine, 1979]. E. Yourdon and L.L. Constantine, Structured Design:

Fundamerzals of a Discipline of Compuzer Program and Systems Design, Prentice-
Ha.}l-, Englewood Cliffs, New Jersey, 1979.

3‘

©1986 EVB Software Engineering, Inc.

295

00 9 080 . DU ¢ 3,0 y SRRV A
B lt‘?ttl',ltl‘)‘.lh \“..':'?‘g '1';‘., l.‘fﬂ."l.‘!!.'?l:‘:l:‘:ts‘s'@"ﬁ *"!’A‘t.h‘.v. !‘:'0!:“’;’1’0'5?"*? 1'5’ N *‘, s""\‘l‘: "‘.: Q“n“.‘ d' *n"’l‘.‘i'.x i ~“‘»‘\~‘"‘ﬁ‘!“$f P‘b“ f""

A
e
i

LT Ay IO
;ft*ﬁ*‘_-_!".n.:‘?a.'?a..l'_».ﬁ‘..: e

Like

Karen L.

Jﬂﬂfy’ *
2
Harris Corporation
March 24-27, 1986

g
a;yO /

L.
..

Presenter:

»
[)
Automated Measurement System (AMS)

STARS Applications Systems and Reusability Workshop
Environment Measurement Instrumentation (EMI)

Software Operation

& HARRIS

Government Information Systems Division

Y Y

o 297

B0 A 19 18, A AN 1 A0 1,0 4 0 Vet A G A A g AN N S0,
B B T e K A A s SN S o RS A OSOON

o

—_—r WA SO - TR T -——
T v 4

TO LARGE PROUECTS

OPERLY APPLY THE

SRy @
AUTOMATION OF THE SOFTWARE QUALITY FRAMEWORK

FRAMEWORK

- ABILITY TO VERIFY DATA (BY IVA&V OR CONTRACTING AGENCY)

- COST TO COLLECT DATA

- COST OF ANALYSIS OF DATA

- TIMELINESS OF RESULTING REPORTS

- WILLINGNESS OF CONTRACTORS TO PR

REASONABLE IN TERMS OF: .

Software Operation

O MAKE THE APPLICATIONS OF THE FRAMEWORK
O ENSURE CONSISTENCY OF COLLECTED DATA

O AUTOMATION IS NEEDED TO:

»

= HARRIS
Government information Systems Division

) ‘ 298

. \ L7 T VR " * v Vi . Mg 7 3,»...-.‘_ a¥ S
) O (R AN MAM M IANS SO OSOGDAHEONDADAONHAOMN SN 3 M"w AR
i3 ""4""3‘#Qgtﬂh,"’::’}.‘,‘ses:ﬁ.V‘A:.A"“-,U.flQ‘Ag;l.;t'_’t’;;i‘i:« g . ﬂ ‘A\H\i‘,.“:h ""‘3“6 ‘r. .5“ [L L, ’x Liin atet] SN YR MR "
3 0 g3 o 35 3 - A N A e 0280 .

4 N
1V/9d WAT ONY 08//TT XVA ¥03 Q31394V]-ALITIGVINO4 @ '
JYYML40S IN1d0I3IAI(Q IHL ONIGYVIIY S1¥OdIY SISATYNY ONV INIWIOVNVY O
3007 37¥n0S
vay GNV NYY1¥04 40 NOTL123110) vivg aitvwoiny -
700] SIN3IWIYINDIY
NV N9IS3Q 4713HS-3HL-440 HLIM NOTLDINNODYIN] -
SWILSAS NIATYUE-NN3Y GIYIINIONI NVHNH @
YYOMIWVY4 40 TOYINO) ¥3S - ALITIEIX314 @
dVS 3svH4 9NIGO) -
70QS 3SvHd No1S3g - m
WIYS ISVHJ SINIWIYINOIY -
180ddNS 31349 3417 104 @
:ONIMOT04 JHL SIAIAOHJ ONV NHOM3IWVYJ
ALITVND JQVY 3L SILVWOLNY HOIHM 1001 SISATYNY ONV NOT133170) Viv(GILVWOLNY Ny
. 140443 00| SWY M)
uonesadQ asemyos
- UOISIAI(] SWAISAS UOllEWLIOjU] JUSWUISA0DH
. J
o > TN
) o5 %
D R s @ o e P s

T TR T TP TR T TR PO T T R T REPTILP TIPTS5 WO ECEP RN ER TN NI A N EN N EN U NN EN N TN R

4 .
e - E— e—— -

o

R HARRIS
7y ’

;:i "‘: Government Information Systems DMsion
1; Soltware Operation

'

ﬁ“i:-.% o
P

AMS DESIGN EMPHASIZES

o
34 o Flexibility and Adaptabllity
W
4
l."
::,0"‘ Automation
)
.!l'
;- o Reusabilicy
L
L‘ - Human Interface Fuanction
)
n
D w
ﬁ: - Screen based Application Support Systea
10,8 .
-
- Data base nanagement function @
#
N\ - RIMS
K-
2-{ Avcomatie Tzra Collacttfon Froetion
> =~ Source Analyzer Program (SAP)
</
)
o Report Generator Functioan
G
!jb - U-CAN USE Graphics Package
& 4 1
e i
' ;
R !
e |
|‘.
L)
’I.
e
»"0
@
N
)
b,
E)
s
3
R
¥
@ v
(&
‘:' “5.
o)
v ¥
o
L 300
L
LAl
K
o
'

. g v
. y . y g q 300 ATy AV 0 R AN At g o i, W8, T Yy g By EUMIOEN RN e
A L R A e R T A S A N O T e R N R OO RO AN

a,

% HARRIS | HUMAN INTERFACE FUNCTION

Government Information Systems DMslon
Software Operation

A) Forms Entry
8) Automatic Data Colection
C) Reports

PF2) Help
PF3) Eat AMS

Enter Opton ar Command Stang:
Level 2 AVS Forms Entry*

Type of Form

A)STARS Worksheets .
8) Sofware Goails (Acpsars only on
Managers menuj

S

C) Softwars Change Error Form (SCEF)
D) Resource Data

-
X

TR

PF2) Help
PF3) To Retun b AMS Man Meru
Ener Option or Command Sting:

Y

X

1

Level 3 AVS Worksheet Entry*
STARS Metic worksheets
A) Pre Ful Scale Desveiopment Phase
8) Requicements Analysis Phase
C) Prafiminasy Oesign
0) Oetailed Design
E) Codelind Testing
F)CSC Taing
G) CSCl Testrg
H) System integration Testing
1) System Performance

/

YOS

PR

PF2) Heip
PF3) To Aetn © AMS Main Meru
Entar Coiy:

. e
Dot | AN, o

A‘!'

* 5y xs ’& L) <J O ! (N
“‘n".o"g‘hi'l:!ﬂ M '0 |'l' "‘Q 0 ,\" i' ! (4 3‘ nﬂ"d‘) A' 'l"‘ L) “"" "4'/ AW &t" 'l'a."ﬂ“’l Wk

b b
Y 'l‘. l'o) .l‘o t';‘i‘g . oW ofi"‘ had l' AR

)
0
a"‘
W)
9
¥
N
)
P L
T ¥
el)
e Q:‘a
i
o
;|:\ .
" HAR R IS HUMAN INTERFACE FUNCTION
‘ -
"|.
)
I Government Information Systems DMalon
t Softwars Operation
"
oy
l' Y
0! i
K a8 Worksheet Entry®
»
,(STARS Metric Worksheet
v gt A) Pra FulScale Development Phase
L 8) Requiements Anaiyss Phase
0 C) Preiiminary Design
b 0) Detaded
="y €) Codetn Testing
e F) CSC inegraton Testrg I
. G) CSC! Teatg
Lo H) Sysiem integraton Testing i
R 1) System Performance
v . PF2) Help
o PF3) To Retum to AL'S Main Merw
,‘.: Enter Choca:
p _}-“
b
3)‘_
JI
X .
‘ “3
LY ‘
N o' an
Ll
: :. (SYSTEM)
s Does ai 2w st documenason have separale
POy] volumes or saparatons within a single volume
N based on system Arctore?
AW
l) (3,8
I‘ . (SYSTEM)
LY Are ail the software iistings included in the
'}\ software documentaton?
N
": EFFECTIVENESS - PROCESSING (EP)
f\ EP.1 - Processing Effectveness
® 9h
. ;v (SYSTEM)
» How many afferent overlays are used in e
) ‘;» systom?
Wy
g
"
»
W

1@ SIS

ol
-{ ‘.-.li
)
e 7
K 302
o
i X
)
L)
l.'

) Pttt

()
AR SR A RIHORCIRTY Wratiatnrhiitanbullinhattheitdhahnintntahalniniatataintdadtndatntody

07 oL Andlann
s w Kauangyq
oL rL Anprqriadarany)
sL st Kipqrpurdeg
w 1{A Qupqrynap
st LA Anparatamg
sy’ 1 Aupqryay
0s’ 3¢ $SaU10L0)
09’ 06’ anqesny
113 6 Amqevmumiy
89 113 finiqenog
os’ 173 Aiprqesnay
w 86 Amareay B
A
ViV v YOOI
§8/50/21 ALV $8/50/01 ALVA NOLLYINITVI ORLLAW
014V IANYNALILNT
1080 T1IAT

nuawannbay JSYHJ
SWS *LIJH4(0¥d

LUOJTYU TVOD SINS

LOISIAIQ SWIAISAS
UONBULOJUL [UBURIIBADY)

wnmr | SIGEVH G

).

- m

v b

bl "

\ € o a L, Py -~ - - i ¥ ., - -
LKA R LSS RASAA S

4 - V\r\ ~ 7 .
S UNRAAASNS Ao e\ e OP X s d v @ s s s s @lratia

} Ry
5'@ l'.‘i
N

12/05/85
= Actual

- e "‘QJ.
DATE:
semswes . Goal

.

\
N

i

- REPORT GENERATOR

= .40
10

SMS EXCEPTION REPORT

AR14.1 = .50
AR142 =

AR 14

Detadod Dosign

LEVEL: Unt

F 1.00 1
90 1
80 1
70 1
60 1
50 1
40 1
30 1
20 1
10 1
00

L

WX e @ e = >

METRIC CALCULATION DATE: 10/06/85

FACTOR: Flexibiity

AVERAGE FACTORVALLE: 4
UNITS BELOW GOAL VALUE:

GOALLVALUE: 60

HARRIS

Govemment Information
Systems Dwvision

Ayt 304

AL “g e A
OO NOO AT SOOI

)) ; () N 0 BRI OCTOAN AN AM .
X O N N A RO R R QR I DA SRS UMK DAL SRR

[)
<
5
s
3
o a8
S
3 ©
o (9
= =
= = .
& = o =g
5 g
- 2 o
- 2 g
o o .
v 2 s
‘il 5 £ 8 o 12
"'v‘ b ': — .4
Al e
X 8 =
20 i E
F).‘ E 2 [~} ww v
o T ! = " ~ p
i g:-) § 2E °
b k3 wb o
0ci |
U) &
e = 53053
:'.‘Q‘ mzs b':‘,"zu B) WX e @ o o) e e
A =2 244EY
. <i: 2it53
7
il
»;5 8%
4,
a5,
K h
] ')
(O
"y q J
)
UAN)
s

5

[\ & 305

i

o

y X : K ANEATEAN (ANTIAR R
; 4 X 100, T RV g A b ot e T T B Yy
‘!'*"."‘i" &" Q" L) 9’3 \“ (‘. Q" Q." ‘&"'6"“'“!‘ |""‘hl‘:hl‘:3' k‘:!l'.r.'"l?i‘g?i’cft.h,‘at.'besiisa-.IQQ A YIS AP I L I LM - DT

T oY Ba 2im i foa ol mia alh AN re dbla o WO TR TP TR TP Y TN T O O T O TR T e TPY R VWU PTW U YR

-/
i
wrwrt@i iy

12105185
el

]
DATE:

SMS GOAi. REPORT

REPORT GENERATOR

meinlily

s
SMS

uiremen

1.LEVEL: CSCl
ENTITY NAME

SMS

PROJECT:
PHASE: R

Srr]® e
Govemment information
Syslems Division

ACTUALE e
COLS & — - — —

-
_

W

306

A 't"-‘..

T, 0, W T Ay ey
».

OAGAGHOSCR0OGNONTN 080 AN *
8, nq‘;‘ﬂ-a«’:‘q‘_"\'h)g'?,'g"“'g15‘q'!‘ﬂt‘\‘:‘n‘“‘.‘!"\'z‘n‘l.'ﬂi‘,t i‘»‘.‘:"‘t:"A'&a3"?},“‘1'*’!.5‘10"%”

DO OAR MO OAIOLNL POV A OLFOLFDAF M N OECEEN
Lty hanty DA IO OO HANPOOUER RAE ACOEE

O
A

e S
‘-.- y ":";- -
L7 -

L Ml >

N\
\
D

REPOAT
GENERATION
4

:

SRS
Query
Report
Data
PARAVETERS

METRC
EQUATIONS
N
§<
N
N\
|

NN
DATA

TOMATIC
DATA
g

OATABASE
FUNCTION

ADMINISTRATIVE
NNNNNNNNNS

NN

N MNAGEMENT

N
N

N

PARAVETERS
Interaclive

| nput Data "
Previous
Values
PARAMLITERS

<

HUMAN
INTERFACE
FUNCTION

Software Operation

\
[\

& HARRIS

Government information Systems Division

—
Ca—

T
r
\.

A 307

(]
[3]
[l
&
=
w
[5]
3 2
8 o ® &
= -~ a o
- - e
6 -4 =1
W B >
Q B @ X
w T 8 <
Q E & £ 9 a
< B oW oE N
[} -4 sﬂg
< 1] w W o
g’, B - " w 2 o £
0 3 8 %]
2] w
a3 Q - g
5 £ 3
s = ngs w0
2 8 2E:zg 3
a ©n &.§s~]
‘> < e w [2] W
> = W =z § =
E & Eggk - N M e
- &~ u W W W W
a B € nwn nu wn w
f Es 535 3 < = 2 2
Q0 = = = =
= 28 T §E=x = E 2R
mgﬂ = x € <
t 3
wg. | I T T |
mﬂo - N ™ =
L3
] < 2 £ 2
T Ez £ £ EE
S3
L —
ﬁsm Tre
L
é
[
>
Q
<O
e
308

130d3Y LNIWNOYIAN] 3JHVMLI0S
3 14043y WINA0¥J/IINVH) IYVMLI0S
14043y SIILSI¥ILIVHVH) IHYVMLIO0S
13043y NOTLVWYO4N] 1S3] 3I¥VMLIOS
14043y IYNLIANIXJ 3D¥NOSTY IWYMLIOS

1404 NO1S3Q A4103d4S :NOBLdQ

*140d3y NOILVNIVAJ 3¥VML40S SYy1S HLIM 3INVIY0IOY N1 NOI1I3TT0) Vivq
1¥0ddNS 01 INIWNOWIAN] ONITYIINIONT JYVMLIOS 3TIA)-3417 V NIHLIN

309

@3¥INGIY SWSINVHIIY NOLLVINIWNYLSN] ANYSSIIN NOI1SI[ONV Ad1DI4S :D1svg

WAVT T TWTNY

SIATIIIE0

NOTLVINIWIYLSNT INIWIYNSYIW LNIWNOYIANT 1€

Soi g il u g

yoneiedg 01Tmjjos
UoISIAIg SWejsAS UORRUIIOIY) WIWEIASD

SIHHVH 74

oS @ RAL AR s v 2 YRR X R TTRTL L) @ o5y s IR 2 s S R XA S O LIRS O Ltms Sy Pt s

O e
Lty ‘ta,‘ -

|

1'3".

n
PRI

..’

o
5

e
-

OLOWYD) O
?-\i ',‘n"‘,s'!’q’ff o

\
b n'ftw' 5,1‘“

‘o
A%

§’ \'l. \’.‘J"‘.v"

<Y

1 ,!s:w 2,40, 1%

Ay

i

F ;-
T ot

% b

ity
4 l"." "‘t, ?

CRMN
1‘.‘%'}'}4‘

ENVIRONMENT MEASUREMENT INSTRUMENTATION

HARRIS

i
,///,’I"l \
S
Eg" gi o
gli—¢8
s |8l .3
i :
Ry
-3 -
L. Ak
2
- 1L R
I *
i]
3 s il
3 T
& [//

8% 6" gt 0
f"g{“’«?"fo ¥

»5 ¢ 1 3
ORI

’ FAN BN
Yoo 't’, :E’z?i"» !n.'-y_ \

£,

310

X PRICRK] 3
ANNIA AR

e A R i 4 . . *L i
P e e Tt et UM U DATLCRN

&

i’if’?!

LN
K

WO
'i'.‘!
5_‘ "
HARRIS
O
..?0'5‘
R ()

DOS Government Information Systems DMsion
7, Softwars Operation

€31 ENVIRONMENT MEASUREMENT INSTRUMENTATION

" TASKS

¥,
3255 : ExAMINE SOFTWARE DEVELOPMENT LIFE-CYCLE FOR
Or1GiN oF DATA [TEMS.

'ﬁﬁ 1. AUTOMATABILITY ANALYSIS

g
) 2. SCENARIO PREPARATION

: DETERMINE AND DESCRIBE INSTRUMENTATION MECHANISMS
gt? Across LiFe CycLE.

e ' 1. MecHANISM DETERMINATION
N 2. DATABASE SIZING/ARCHITECTURE
3. Data AnaLYSIS

dﬁ Task I1I: Top LeveL DesiGN OF ALL DATA WRITTEN MECHANISMS

1. OpgrATIONAL CONCEPTS DOCUMENT

ay 2. SYSTEM REQUIREMENT SPECIFICATION

?

R 3. SoFTWARE OPT LEVEL DESIGN DOCUMENT
1

o 311

IO
'!gatizﬁﬁﬁtg'l;g"l, *

-

ENVIRONMENT MEASUREMENT 1NSTRUMENTATION

METRIC
TOOLS

—

PROJECT
DATA
BASE

METRICS
DATA
BASE

LIFE
CYCLE
TOOLS

Development Environment

NT STATE OF THE ART APPROACH

’ ARG I DATDNTIC AR NN
R S ARSI AN I

DM/
A“i'é‘,\.

DA ML
AN A,’ll"" A.f W

RS
“\“.""A’ 4I'.:

B wg Ok % [3TN
. ‘?‘ ,','.-‘,'_Z"q‘d.«.‘e%"»!;‘:,*a,'.*»".‘»“ A

,:D'j;,#,q :4:{‘;‘!&

=
¥s
Zl—
o3
S¥
25
(T7]
N ..l < &
Betwy @ wi
§ S &
= &8 — T
o £
-3
<86
Til :
d g
us
[+
| _
312

3 .) ¥ SN N . % S
% “S‘Aﬁ?ﬂqh"?"#‘.rb‘:‘t‘ »“.‘:ﬂf NGO \A"5 e"f’b“t‘ai’ ‘~",'

asetst®?

AUTOMATED
HETRICS
DATA
COLLECTION

!

. PROJECT
DATA BASE
LIFE CYCLE

SOFTWARE
DEVELOPMENT

TOOLS

ENVIRONMENT MEASUREMENT INSTRUMENTATION

A

i

ENVIRONMENT
EXECUTIVE

GEN.

REPORT

HARRIS

Systems Division

REPORT

\
%)
DGutadat bt

SR g G, AN 0yt .
A‘PA’&"’-:"‘.l‘,s’xfl’st*'c‘d’-P’a'a.‘ﬂs:!fa:'«‘fw’l'.«'A‘:‘.“r‘ﬁ‘{c‘.‘,‘g‘,ﬂ\.}"

Development Environment

HARRIS' PROPOSED OPTIMAL DEVELOPMENT ENVIRONMENT

BOOUOUOUOLOLA N
‘AJMQ.,‘F‘;‘!!;&L..‘i_, aet

R Sal cal Vol - 4R o Bl o Al e bkl nd

January 86

- N
n SUMMARY STATUS

Program .Initiated 8/9/85

-

.

Formal Customer Kickoff 9/17/85
Automatability Analysis Complete
Task I Interim Report 27 November 85

Scenarios Complete
Task I Final Report 21

Software Operation

>

Pt T Ao @ 128 A

2 HARRIS

Government Information Systems Divisio

o

Sy
(
\

29 o)

N 314

' L "y iy RANORHON QNGOONE SO Voo
RDOODEARAOS KR LA J ORI A XN TR WK VAR KHANCNICI AR AR IAS Lathat bttty

','p 9 STARS
Ml BUSINESS PRACTICES MANAGEMENT
e WORKSHOP

DOD-STD-21687 SOFTWARE DEVELOPMENT STANDARDS
“‘i‘ PACKAGE DEVELOPMENT AND OPEN ISSUES

.
R
"

8Ll
Fo e e W
FEE

g;:;: (YF
" Los Angeles, CA '
18-22 November 198S

Y ,z Ole Colubjatnikov

hat Chairman, EIA DOD-STD-SDS Review Committee

o Vice-Chairman, CODSIA Task Group 21-83 on DOD-STD-SDS
Cenersl Electric Company

R Syracuse, New York 13221

W Phone; {315) AS6-8708

) . 315

OO
'o'!'e"-"ﬂ')t‘

LN
"b !i

L3¢ ML)
ho.!.l!"l“a

AN eV Y UL TN DR EAITICR, LICJOURNUICINOL X0 X043 (W (W
‘;d"'&"-‘s“’t‘. A..,“l“\ A .""‘2"‘-.‘-‘,"‘-! 'ﬁ% Q“fﬂ":ﬁ".’ .‘I.‘J “.""l"’\"’l’ﬁ.!"?Q"St‘“.Q.s.‘l'.‘.("‘_.“‘.Q"‘A’l’;'h‘ .‘!‘ .‘E(A‘la“i.i‘l‘g.li).l'..“_.,!".l""‘ﬁ e

,ll"' » S w7 » ol - u - " PNWRVEUNRVEVEFEUOTRU.FIYEAI T WA WLT
&
Q.o.
XA
l"
e
a"‘:
o"‘.
! .
LU
‘n'.. @
hl; 1
o
i CONTENTS
o
e
.:,:. Abstract
".-;‘). Biography
O
i::l' Introduction
i
Mo Section |. Overview of the SDS Package and Development Process
i’ A. The Problem and SDS Objectives
v B. The SDS Package
,::‘. C. The SDS Package Development Stages
}u,:: . De A Broadly Based Public Review and Participation Process
m E. SDS Package Evolution
;;;:: F. The lssue Driven Approach
o Section 2. The lssue Driven Approach (IDA)
: A. Defense Standards Requirements
'»-',:' B. A Systematic Approach
S C. Due Process and Consensus Devel
e D. Efficiency and E{fectiveness of the Voiuntary Standards Process
A E. Active Versus Reactive Standards Deveicpment ‘
. : F. Technology Transistioning From R&D to Battie Operational g
o Environment
e)/
:3.' Section 3. SDS Development Jssues
o A. lssve Status at the Beginning of CODSIA Review (Cycle 3
biod B. Issue Status at the Point of SDS Package Initial Release
;‘)" C. Limited Coordination and Prcposed Changes
xf:: ' Section §. SDS Implementation and Plans for Revision A
o A. Government DOD-STD-2167 Impiementation Plans
o~ " B. Industry DOD-STD-2167 Implementation Plans
' C. Assessment of SDS Interim Release
- D. SDS Revision A Overview and Milestenes
b E. Summary of Open lssues
ko F. New Revision A Initiated Issues
:; Section 3. In Summary
Fie A. SDS Package Assessment
- 8. Acknowledgements
o C. Conclusions
::::. D. Recommendations
o ’
::"n References
o
o
®
e
Y
\"..
o) 316

Ty

\ YOG RN
\ ‘a‘,':t',‘:v,-i!.,"JJ!i.‘f!."l.‘f‘,‘!-‘»;"h‘!*r":‘o“‘ Saba

AL .

§ 0 () " s o g VR ¥, }) A
O R I RO ot -QZ‘A‘I‘Q'Z‘A'JA";'l’h’»‘a'a't'.'a'y'.l'x'.t'n't ATV NS

S Y

. o
AAAAAT

- S

-

«
L

& A4 i
AAATERL

a,

-
e)

R L Y

‘.,l d hd
P o N4

&

Sy
v
.
’

=
s
1‘ .\

5.0 PR e P P,
< My ”"'i~ o K' ,Q".As

DOD-STD-2i€7 SCFTVARE DEVELOPMENT STANDARDS PACKACGE
DEYELOPMENT AND OPEN ISSUES

Ole Golutjstnikev
Chairman, EIA DOD-STD-SDS Review Committee
Vice-Chairman, CODSIA Task Group 21-33 on DOD-STD-SDS
General Electric Company
Syracuse, New York }122]
Phones (313) 436-0700

ABSTRACT

This paper is based on extractiors from the CODSIA Task Group 21-8) Report
on_the DOD-STD-2167(SDS) Package Coordination Review.) '

The development of DOD-STD-2167 Software Development Standards (SDS)
Package is one of the moast complex and comprehensive standards development
efforts undertaken by the Department of Defense snd the defense industry. The
SDS Package development spans 8 ¢ year period from April 1979 through June 1935
with implementation and revision efforts projected into the next decade. Over 3500
individuals and 150 corporations and Government components participsted in this
joint effort comsisting of thwree Government sporsored workshops, five industry (EIA)
sponsored workshops, and three review cycles containing approximately 12,000
review comments. The DOD-STD-2167 development is .a significant departure from
a conventional defense standards deveiopment approach and can te used as & future

mode] for improving standards development process in the mission critical computer
resources area.

The evolution of the SDS Packsge is based on an Issue Driven Approsch (IDA)
which focuses on the root causes of the review comments rather than fixing on the
apparent problem. IDA comiders conflicting goals, as well as alternative methods
of solution starting from raw comments, to root concerns, to basic issues. Once
an issue is identified, it remains on the list, permitting traceability and follow-up
to sssure its continued resolution. This issue-driven approsch makes the integration
of conflicting factors manageable through an incrementally evolving negotiation
process between DoD and industry representatives.

The DOD-STD-2167 Standards Package was released for DoD-wide use on &
June 1935 and is based on final or interim solutions to 35 issues extracted {rom
12,000 raw comments. Out of this total, Revision A work is continuing on 18
issues with interim solutions, which require extensive research and development.
Many of these open issues are identical to these being addressed by the other DoD
software initiatives: Ada, the STARS Program, and the Software Engineering
Institute (SEI). Therefore, it is recommended that these initiatives should
participate in the Joint Logistic Commanders/Computer Resources Management
;.‘:)LSC/CF!M) SDS initiative 3o as to accelerate the resolution of these longer term

issues.

This paper discusses the JLC SDS Initiative and it elaborates on the issue-
driven approach by descriding the concept and providing the status and description
of the 35 issues encountered during the DOD-STD-2167 development. This
discussion also provides plans for the resolution of the Revision A open issues and
the implementation of DOD-STD-2167 in the DoD and industry.

Copyright (c) 1985 by Ole Golubjatnikov and CODSIA Task Group 21-83

317

”

i oy S 80)) Y
!lg 3 X 0 W l.!.l' e "!‘Jl’.'&‘!.&‘!‘b‘.’l.!'Q‘S‘I‘; l‘

!.:ﬁ.et!g, IANSNOS Q:!!l,‘.‘;‘?h‘b:‘!.;"Q.‘,l.‘!!.‘.h‘.

ST
U P

AV W oN L 'ai - A% PR A USRS UYUTUR DY UWILYS UW UY U (P L) v, gva gby AV, gt

-
Yt

L
1]

-
"

BIOGRAPHY

22

Ole Golubjatnikov is the chairman of the EIA DODN-STN-SDS Review

._ .3

L4

A5k Committee and the vicechairman of the Council of Defense and Space Industry
! Associations (CODSIA) Task Group 21-833 on DOD-STN-SDS Software Development
e Standards. He was responsible for conceiving and introducing the issue-driven
'»-;'.: approach to defense standards. He is also the editor and principal contributor of
& ;\' the CODSIA Report on DOD-STD-2167 and has made numerous contributions to the
WY standard, Including Appendix D on tailoring and proposed Appendix E on systemn
Pt engineering integration of prime and critical items. Over the years, Ole has
) participated in practically all DoD mission critical computer and soltware
.S initiatives in an industry leadership role. He is an EIA representative on ANSI X)
x‘_f-.: and a U.S. delegate to ISO/TCI7/SC7 on design and documentation of Computer-
R Based Systems,

-~

™

.

Mr. GColubjatnikov was the principal contributor and editor of the CODSIA
Task Group 13-32 Report on DoD Management ol Mission-Critical Computer
Resources to USD (R&E) and the principal industry reviewer of the DOD Cornputer

v

g

N Technology Report to Congress and its Study Annex. He has contributed many
N innovative solutions to complex technical, management, and acquisition issues and
:‘,-:-; has supported in setting the stage for a new direction In DoD computer policy to
M maintain United States’ defense computer technology leadership. The above
iy described CODSIA Task Group 131-32 recommendations and activities led to the
Py formation of DoD's Computer Resources Council (CRC) and Defense Computer
AR Resources Board (DCRB). Ole was also instrumental in the formation of the
,;}::.: STARS Joint Industry Interface Working Group and the Computer Systems Interface
P Working Groups. :
R
: During recent years, he has participated as a member of CODSIA, EIA, NSIA,
(i and Navy task groups, and is a senior member of IEEE, the Computer Society and
RS ACM As a result of his GE and industry association activities, he has rgvneved
~.‘::~ plans or participated in practically all recent DoD computer technology, policy and
_:4-: standards initiatives. . '

-\-:‘ .)
Lo Mr. Colubjatnikov is a consultant for data systems architecture and the
management ol computer resources. His current assignment includes the
9 development and strategic planning of surface ship ASW systems and computer
NN resources, and the development of GE's software support environment based on Ada
,:,\-' and DOD-STD-2167. He has published numerous reports and ¢ nputer and software
; :} conference papers.

RS A
Wi During his career, he has been involved with more than one hundred real-time
6 computer systems and distributed computer networks for commercial and m'ulntary
CSKS applications. He was responsible for the conception of the rgdar peripheral
SN architecture of the AN/TPS-39 which is the baseline for GE's Solid State Radar
- Family. Prior to rejoining GE in 1977, he was president of (;O'MTTA,_Inc. and an
' independent consuitant for a period of six years specializing in computer
e, architecture and real-time data systems and software for industry, business, and
:’~ defense applications.

v Mr. Golubjatnikov has been associated with the computer fleld since 1930 as
2 an undergraduate student at the University of lllinois, working on the ILLIAC and
o ORDVAC computers. Ile was the Manager of GE's M-600 military computer
o product line peripheral equipment engineering. fle has been engaged in the
2 development and design of twelve commercial and aerospace compufers a_nd
o associated peripherals and software products for GE and Honeywell, including
Fads M-236, M-605, M-625, MULTICS, 2016, MQX, PN-335, FCAN, MK-300, AOP, FFP @
~.¢Q and MCF,

"t

&_';'\

W 318

L

LAY

s

S i T TN e e e R RS

41

R

°

o

:‘&3 INTRODUCTION

§

:ﬁ %"\ This paper will review the SDS process and the lessons learned as they relate
;'- to future defense standards developments. The issue-driven approach will be
; described, as well as a review and description of the plans for DOD.STD-2167
:. implementation and the resolution of Revision A open issues. Towards this goal,
\. this paper is presented in the following five sections:

Wy A l. Section | - provides an overview of the SDS Package development

". process.

\

94 2. Section 2 - describes the issue-driven approach.

‘

\ 3. Section 3 - reviews the status of the 33 SDS development issues.

\ .

¢ 8. Section & - describes the Joint Logistics Commanders/Computer

! Software Management (JLC/CSM) Subgroup and Council of Defense

!, . and Space Industry Associations (CODSIA) Task Group 21-33 plans

i:o. for the resolution of Revision A open issues and DOD-STD-2167

::" implementation.

l.' .

;';" J. Section 3 - summarizes the results of the JLC SDS initiative,

.|'

W) acknowledgements, conclusions, and recommendations.

®

40

3

WY

o

,l-

:I‘ e‘.{?

i

]

o

L AREANLL

XK K
ELL

- o e

T
9@ oS0 @

"

%t
L 4
A

-
e w @

¥

319 |
. |

s
'
O

o)

R) P s "
BN . DOOO0ODOO 00 » DL OMMNM OISy Tty eV T 1y e b
“L't.?‘:‘3':‘,"‘?'u‘!'t‘:l:.:’:.!’:‘!'i nh .'»‘!'-‘!‘s".‘i‘"l‘:‘o"h‘!h‘,fu‘eh"'i".'s‘.’I":’l"' ."l..n"."i b“!‘lﬁq’l‘!’l‘u':‘,:'l‘-'ﬁ.A'!. ;'l.n'l.l'I!q.l,"0’"‘?0’5!.‘5?1"‘0"‘.Q"._'.‘ gl’-'x".'n‘,‘ﬁ"‘,ll.‘l‘.‘l"

5

.....

SECTION |. OVERVEYVW OF THE SOS PACKAGCE AND ITS DEVELOPMENT

"'Q" PROCESS . o
.‘. |."
Nt The SDS Package has evolved through 3 public review cycles, and |) -
X document versions with 12,000 comments and 33 issues addressed. It has been a

s massive effort based on the best of Government and industry voluntary standards

KX N participation and contractor's efforts. The total effort Iis estimated at $10 million

el with a 50/30 split between voiuntary efforts and Government funding. The process

R0 contains Jessons learned and sets a standard for the improvement of future defense

t: ' standards deveiopment efforts.

;“')" This section defines the defense software standards problem, provides an

b} overview of the SDS development process and characterizes the evolving SDS

§ product.

4

:'g:'f;'é A. THE PROBLEM AND SDS OBJECTIVES
(Mission-Critical Computer Resources (MCCR) are 3 key element within modern

’ ._«‘.:; defense systems. Efficient and effective development and management of these

: '; tesources is fundamental to system development, interoperability and loq;evity -

NN theee key factors which will determine the success of our defense in Coming years

s and its cost.

L& .

o In the mid-1970s, studies were concucted by the DoD Indicating serious

e performance problems, schedule slippsges, and cost probiems with practically all

o major weapon systems. Much of this was directly related to software associated

s with the defense systems.

"‘H‘ .

Following these studies, a8 uniform computer rescurce mansgement policy,
(A DODD 3000.29 and DODI 3000.3l, was Introduced by OSD covering ail DoD -
W, embedded computer applications. The Impiementation of this policy in MCCR

e management and the HOL development and usage enforcement has been reasonably

K. z successful. The other areas targeted for correction weres (1) improved

9 coordination of DoD software R&D, which has since evolved Into the STARS

:s:., Program and the Software Engineering Institute, and (2 software development

, standards.
.j>

Phal Current generstion of DcD soltwsre development standards such as MIL-
i“:' STD-1679 and MIL-STD-4% have evoived ad hoc over & period of two decades. A
i number of deferse system and software problems in the 1970s and early 1980s are
' traceable to. probiems with software acquisition, develcpment, and suppoft policies
Wl snd standards. These problems includes

0 o Service and agency unique

o Incomsistent terminology and requirements
o Neglect of various aspects of soltware scqulsition development and

e support
@ ° Incompatibility with modern methods of developing soltware
"-i ° Prescribed requirements which are unsupported oy documentation
o system
:'-; 0 Requirements often established by Implication
2
®
% ‘
e &
K8
o

320

} Q OO0 OAOL LSOO OO OO M AR
R A O SO Rttty gttt

e - e TR : r——— o - & § a2
,l:‘\

v"‘!

KN

. &

o

::;:;: 6 Requirements which are subjective and cannot be easily measured

)

:0:::: o ° Not designed for tailoring as a function of project size or software

RO ‘&? category

i Conllicting, redundant, and in some cases, nonexistent software development,
.1{":' acquisition, and support policies and standards frequently result in:

'

L . . o Confusion in the program office

S

:f!ﬁt o Duplication of effort

,"i?‘ o Contractors maintaining multiple management systems

::::'.: 0 Adding unnecessary costs to the software acquisition process

:::::" ° Inability to focus and apply software R&D efforts and accelerate

:.:::.'. technology transfer and insertion

(.’ ()

o The JLC software standardization program objectives were jointly developed
P by DoD and industry participants during the Monterey | workshop. These objectives
‘;“.'o produced a complete and consistent set of tri-service software acquisition,
&:::Q development, and support policies and standards which:

R

:‘:!:‘ ° Establish 8 well-defined and easily understood software acquisition

AL _and development process

A ° Provide, adequate visibility during software development and

':’.t" acquisition _

f,é © Reduce confusion and eliminate conflicts in existing standards

':: o Are compatible with modern methods of developing software

R o Provide cost benefits over the entire life cycle

4
=

° Increase probability of obtaining quality software
B. THE SDS PACKACE

bl

A multi-service group in the DoD, the Joint Logistics Commanders (JLC), is
developing & new software development standards package. This package is the

u :c;ﬂ i P?

s result of the initiative undertaken by JLC/Joint Policy Group on Computer
:::r: Resource Management (JLC/CRM) in April 1979. The following actions were
::E:i identified by the JLC Workshop, identified as Monterey It

3;.:% 1. Develop s general tri-service policy framework for software

ale! acquisition that addresses the entire software life cycle and

Y provides uniform terminclogy and definitions.

:'i}i: 2. Develop uniform military standards for use by all services and

“:.: agencies consistent with the policy framework.

nal 3. Deline and develop 8 comprehensive set of DIDs for ail services

:'@ and agencies which support the acquisition policy and standards.

)

[J The work initiated at Monterey | culminated in the release of the Software
N Development Standards (SDS) Package & June 1983 which consists of:

i

::.é © 1. Joint Regulation, Management of Computer Resources in Defense

,::" Systems

s."

[NaY

@

N 30,

e &

A.:.Q

"

P

”

‘il 321

L

;0;‘; |

R |

1 DOOOO DOOCERI00 DDA OGO OROAOADA IS A NN N S N ORI D SN BA NN NS
RO OURIU R X D A N R MO AN SAGN RN G A A R e

OO
ed '»\5

M

6.‘:|

;:::,‘, 2. DOD-STD-2167, Defense System Software Development

'R

e 3. An integrated and tallorable set of 24 Data ltem Descriptions

S (DIDs) grouped into four areas: @
o ° 3 management DIDs

1:';:2 © 9 design documentation DIDs

?:‘.: © 0 test documentation DIDs

‘:"': © 6 support documentation DIDs

) 8. Updates to software upecu'ol the following three existing

,":-’. standards:

::l:: ° MIL-STD-483)A, Configuration Management Practices for

:::,: Systems, Equipment, Munitions and Computer Programs

EAN)

:.;:‘.:: © MIL-STD-A%0A, Specification Practices

. © MIL-STD-1521B, Technical Reviews and Audits for Systems,

i'i' Equipments and Computer Programs

‘::?::. An additional component of the JLC software standards package is the draft
;ﬁ;i DOD-5TD-2168, Software Quality Evalustion and its 2 assoclated DIDs.

‘l.hn‘

° C. THE SDS PACKAGE CEZYELCPMENT STAGES

i During the evolution, fram 1979 through 1983, the SDS Package progressed
R through the following stages and steps: '

A

AN

;g,;:- l. JLC Monterey | Workshopt April 1979

e 2. JLC Monterey Il Workshopr June 1981 ~ q
"‘;:i:; 3. Draft DIDs (TRY) and standards (DRC) development: 1980-1982

4

;1:::' . .Draft Review (Cycle 1% June 1982 to May 1933

E:::: © First Government/industry review

R © EIA Dallas Workshopt September 1982

‘,.),,". 0 EIA and JLC/CSM review meetings

4

'.'{; © Document set rewrites

;

" 3. Select Panel Review (Cycle 2x May 1933 to January 1938

i_$ © EIA and Select Panel Reviews May 1933

, 1 © Select Panel Meeting: May 1983

\g;: © EIA Los Angeles Workshopt June 1933

i{.,ii © EIA Phoenix Workshop: September 1983

::o d o CODSIA Task Group 21-83 formationt September 198)

© ILC Orlando | Workshops October 1983 |
KV © Document set rewrites: June to December 1933

s 6. CODSIA Review (Cycle 3k January 1988 to June 1939

:. o Formal coordination reviews January-April 193%

1) -"

o @
)

L

o

e 322

o ,

OO

27 p - y P o 4 oo
A J y 0 0 # DGO ORI OO N : i Cp T 4TG0 8T Ky Tt 495
R A OGS n‘,“e’."‘;a.\fﬁt‘?n:",":‘.l.‘!t.q‘?l."h‘.l»‘ l’,‘:d,‘sh Sttty et R ANKONOOUA AR KRS DRSO

- \ Wy

.

CODSIA and JLC/CSM review meetings and workshops
EIA Tampas Workshop: September 1984
Document set rewrites: June 1934 to May 1985

&
© 06 o o

Ny DMSSO review, approval and distribution: January to June

JOLY)

‘,v, 1983

s':;|

o .The standards package dated § June 1933 was released for DoD-wide use in
K% July. With the completion of Review Cycle 3 and reiease of the standards
SRR package, the following two paraliel stages of DOD-STD-2167 development are
: ‘,).., underway

)

52"‘:‘\:.: 7. DOD-STD-2167 Implementation in DoD and industry

:,‘: o EIA St. Louls Workshop: September 1933

;‘.’?.-. 3. DOD-STD-2167 Revision A planning and development

. o EIA St. Louis Workshop:t September 1983 .

3

:'i D. A BROADLY BASED PUBLIC REVEV ANDT PARTICTIPATION PROCESS

b

o N DOD-STD-2167 is applicadle to the complete software life cycle and the {ull
:!o“ range of Jefense soltware applications. For example, it addresses defense soltware
in full-scale development, as well as {irmware and reusable or commercial
ﬂ‘:p‘.:;v software. It has many complex interfaces to related engineering disciplines,
At including project management, system engineering, configuration management, and
Wy quality evaluation. This complex scope and nature of DOD-STD-2167 dictates the
;‘:::a need for broad pudblic review and participation by all segments of DoD and industry
::.,:: affected by the standard.

. (s The industry participation from Monterey 1 through CODSIA Review Cycle 3 is
:.:: summarized in Table 1-1. While 8 total of 63 corporations participated in some of
'::.(, the SDS development and review activities, six corporations (GE, IBM, Logicon,
:v.::v Sperry, Tl, and TRV) participated in alf six worlkshops and reviews. Boeing, DRC,
ot Hughes, Singer, and SDC participated In five of the SDS activities. The
tuth corporations listed represent practically all major segments of defense software
D) applications and a number participated through more than one industry association
oy as indicated in Table l-l. In some cases, different divisions of the same

s
ey corporation are represented In different industry associations, and thus have
3-‘5 submitted a unique set of review comments. In other cases, the same set of
i review comments was submitted to more than one Industry association. These
d redundant comments were deleted during the review process and do not appesr In
the statistics. The CODSIA coordinated review process considered all comments

I regardiess of source or statistical significance.
:\: , E. SDS PACKAGZ EVOLUTICN
B W
i Thirteen drafts of the SDS Paclage were developed by the contractor (DRC).
i These drafts were reviewed by industry, DoD components, JLC/CSM Subgroup,
® CODSIA, DMSSO, and EIA SDS review committee during the three review cycles as
KT summarized in Table 1-2.

. .
::.'l. During review cycle 1, the rework of the SDS Pacikage by DRC was based on
.;‘ - DoD .components and industry detailled comments. Little use, if any, was made of
s
e I

W ¥ Celd

N
a2y
o)

Yol 323
@
o

GHOSY

.‘.' \)
AVg A7y ¥
.|.l by

¢) ety ‘ A AGSOONO OO0 OO0
Satnatiat, ?‘:\!‘t !?‘:0.. *‘al".- N ’:J ‘:0?’%?‘.0!" By ,0‘."!!""."0'.‘:"':&'.&\ :0',ltl'.‘.-;l'.‘:"‘:"L’t’!"!":'!‘t"-”.‘!'4".’:";““:': "‘;‘?’t‘g'@"«’l\»“"‘t‘f"'?elé*0“,a”a":'l"‘,.&’!.‘l‘,h‘!'l'?'l':.l' 4

o “}:"v}r

\)r?"f SERR
Mt 2

-

250

o OF 2 XX @
A L 26 SN S0

1 -
-
Pt
I
- .

I\

LW ML)
At ‘f;.,'?l.‘?o

TABLE 1-1
SUMMARY OF CORPORATE PARTICIPATION IN THE DOD-STD-2167 (3DS) DEVELOPMENT AND REVIEW PROCESS

L)
‘2'."':‘:'5"

.

SDS Review/Development Stage

Montarey 1 | Monterey J | Ofiands |

Vorkshep
{3 24/)

yc
Coordination
Review

XXK”:(X

» X

Cycle 2
Select Panel
.Revigw -*

Cycle |
Dralt
Review

8
2’
j
F
3
3
»
g
&

Xoeo

Xooo

3%

Vorkihep
(1983)

3¢ 3¢ 3¢ >

(1981)

Vorkshep

Induntry
Asseclarjen

fReview

Comments

AIA | BIA | NSIA

|Corpavation

")

SO
h“’\."‘ \)

nnnnnnnnnn

.l’atl'.t\‘ R -.tl’.,l

324

(%0 ISR AR NN
(RN 0:"~E‘90?."'.."v'."n'.“h""f"e."'

Xe

LA & AN
A,I‘g.j.ogl’eeé' ‘c‘e’ﬁ‘ic'.fﬁ.ﬁ'.fo

ELLL

e aAs ()RR

-,,-
s N (e

P
e

A

faral)

- s
- -

=

-.‘:' .

-
-
L

-

)'?N'

X

TABLE 1-1 (CONT.)

SUMMARY OF CORPORATE PARTICIPATION IN THZ DOO0-3TD-2147 (303) DEVELOPMENT AND REVIEW PROCESS

SD3S Review/Development Stage

Review

Cycle)
Coordinatien

{*CODSIA)

¥ wx

x

xe
X
X

)()iKLtK

(2

AReview

Crch 1

Select Parel

Revisw

(*CIA Workihep) | (*Jelect Parm

Cycle |
Oraft

xe

Xoo
Xe

Verhthep
(190

x| % 2 X X X

K X

26

Monwrey 1] Orlands |
Vorkthep
(1981)

<

b 3¢ ¢

ot

Montarey |
Vorkshep
(1979)

I x

18

hdatry
Almullga

Reviaw
Commenty

AlA | TGIA | NSIA

b 4
X

Corporation

Soltware A
Sperry

Singer
Sofiech

o

Teledyna-Brown

Telos

Textren
n
TRY

Vestinghouss

uTg

Yeda Ing
Vitro

Vought Corp

TOTAL

. .
4
fanly G’o ".D.O) “A“'O,"h‘;h"l ‘ ..'n':| .:’l':‘;'

V)
l!!"‘ 'I’o.

K

()

§
s ‘?\'OEs'M‘M.' !

325

0 g
b bt it

)

A% '.a"'a!h’."u@o‘.’}

\

- -
AR R e

(3

- E Rl 4‘ r *T ¥ X X X X %)
IR @

LA

]

M
'r.'l‘
M

TABLE 1.2
OVERVIEW OF THE SDS PACKACGE EVOLUTION
Document Set Version Reviewed By
Review Cycie I:
April 13, 1982 Draft Review Industry DOD Components
Review Cycle 2t
April 1933 Select Pane! Review Seiect Panel & EIA | JLC/CSM
July 30, 1983 EBIA NC/CSM
August 31, 193) EIA JLC/CSM
Review Cycle 3 '
December 3, 1983 - Formal Review Industry DOD Components
May 1984 - Issue Resolution® CODSIA NLC/CSM
July 1984 - [ssue Resolution ¢ CODSIA & EIA JLC/CSM
October 1984 - lssue Resolution® CODSIA - JLC/CSM, DOD
December 13, 1938 - Issue Resoiution® | CODSIA (Observer) | JILC/CSM
January 15, 1985 - Refinements® CODSIA (Advisor) JLC/CSM
January 30, 1983 - Refinements® CODSIA (Advisor) JLC/CSM
May 1983 - Refinements - DMSSO
June &, 1985 - Formal Release - DMSSO

i
B JOLIOLIT) t 8 By Kot
g 0y 0 15 000,00 0% 200 09 00 00y

NOTE: ®Working drafts for incremental Issue resolution. A limited number of
working drafts were distributed for Industry review.

the guidance jrovided by the EIA 13 major {ssues and the AIA I objectiors and 13
concerns, Due to the compiexity of the issues and’ the approsch used, little
progress was made during the first rework cycie to address industry’s concerns. To
srrive at a standard acceptable to industry and to keep abreast of rapidly moving
software technology required a different approach. The lssue-driven approach was
proposed by EIA and adopted by JLC/CSM during the select panel review meeting
28-26 May 1933 and subsequently used during review cycles 2 and J.

Further, if the standard was to be developed In a timely, technology
responsive manner, close cooperation between the JLC/CSM Subgraup, the CODSIA
Task Group, and the SDS deveicpment contractor was mandatory. Such an iterative
and cooperative resciution of issues was not implemented during the dra{t review
cycle | and resuited in a failure to resoilve critical lssues identified dy EIA and
AJA. During subsequent review cycles, on assignment from the JLC/CSM Subgroup,
DRC successfully recorded the essence of the Iterative negotistions between the
Government and industry (CODSIA) representatives on the complex lssues under
discussion. As a result, during cycle 2 and), they were able to adjust the wording
in the standard, DIDs and reiated documents to correspond with the agreements.
This critical contribution to the process should be recognized for subsequent
Revision A and {uture defense standards activities.

PF. AN BSUE DRIVEN REVYEVW APPRCACH
The evolution of the SDS Package is based on an lssue-Driven Approsch (IDA)

which was conceived by the EIA SDS review task grovy chairman, Ole
Golubjatnikov from General Electric in June 1982 and applied during the EIA CoD-

326

(} 4

r3

. : : 3)
Al ATt AN e Tt T it Ot 1 N S S n e

. . OGO GRG0 %A
N e I e A L AR OO

53:.
o
.‘:'.
0 STD-SDS workshop) in Dallas, Texas, September 20-26, 1982. The approach was
y:". subsequently adopted by bdoth ILCY? and the select panel during the second review
e % cycle in Wilmington, Mass during May 1983. During the third review cycle, IDA
W w0 was further refined by CODSIA Task Group and JLC/CSM Subgroup. The adopted
e review approach is further described in Section 2 of this report.
0
;:::' The list of SDS issues evolved during the three review cycles as shown in
AN Table 1-3. , .
:.||
8 TABLE 1-3 .
;' SUMMARY OF COMMENTS PER CYCLE AND ISSUE EVOLUTION
_) Review Cycle Raw Comments Issues
'1': “Per Cycle) New Cumulative
o
i Cycle |
(EIA mo}, s130 13 13 (EIA)
e Other 3810 18 (AIA)
[]
'«:'?’ Cycle 2
‘,:: EIA 763 1 26
;.-:. JLC Select Panel - 13 82
., Cycle)
4 Indus try 2030 181 2 44 (Beginning of cycle)
:: DoD 3s01 i 35 (End of cycle)
N ‘ _
58 TOTAL 11,329
e The initial set of 1) issues was ldentified by the EIA Dallas Workshop’ dwing
N h cycle 1. In s similar vein, the AIA cover letter to JLC/CSM during cycle
.:‘.: review identified 13 general issues. These two lists had & high degree of
) commonality: the original list was expanded to 42 during the select panel review
::’ cycle 2. At the completion of CODSIA review cycle 3, a total of 33 issves had
" been identified and addressed. This list of Issues is discussed in Section 3 of this
D) report.
5
o
ass
l}
)
s
B
)
o
e
.")
5
o'l
o
IR
[]
l‘. ' - ‘!.‘
e TJ
»
zn
i
A 327
o

O T DT iy W0 { 2 ¢ gl
O D A S N A RN

)
l.“ ' " AW)
OSSN

WNME ™A WR

)
:?4';::‘:' SECTION 2, THE ISSUE DRIVEN APPROACH (QDA)

s
:#::' A successful standard In an area of rapidly noving technology must be
e technically sound, adaptive to changes In technology, and broadly supported by a
o wide variety of developers and users.
W .
e DOD-STD-2167 Is such a comprehensive standard, resulting from the joint
',.:. efforts of the DoD and the defense industry, DOD-STD-SDS development process
;:l\ is based on IDA and represents a significant departure from the conventiona!
A approaches 1o defense standards development, The IDA addresses five fundamental
‘) Issues inherent in defense standards devejopment procesn
?.:ﬂ; o A systematic spproach to Issue resolution In & complex and rapidly
%’ moving technology area.
:0 X o Due process and consensus development.
N o Efficlency and effectiveness of voluntary standards process.
%,. ’ o Active versus reactive standards development
”) o0 Accelerated technology transitioning from R&D to battle operation-
A al environment.
).) .
e This section will describe the IDA concept and summarize the lessons learned
® in applying IDA during the DOD-STD-2167 development process. The IDA concept
P can be further refined based on lessons learned and used as & model for the
4-"'4: development of future standards in the MCCR ares, such as the computer systems
$t}’ interface standards proposed by the CODSIA and the Defense Computer Resources

\i Bo.fd (DCRB). i

‘-l
P A. DEFENSE STANDARDS REGUIREMENTS
I NS Properly conceived and usesble standards are essential, both in the private
:‘f.* sector and In defense, to cope with increasing sechnical complexities. Software
g development standards, In particular, are becoming Important as s means to
% mitigate problems encountered in software development snd the acquisition and
Bt operational use of computer based networks, systems and products. This
:) observation Is supported by the rapidly acceierating software standards development
*giny activities In the early 19803 with such national voluntary standards bodies ast BEF

snd ASTM, and international bodies, such as ISO and IEC,

N

N As U.S. deferse posture ls critically cependent on software and resulting

28 defense systems sutomation, It Is Imperative that the DoD maintain a national and

Y Internations! leadership position in softvare standards development which ls a
compiex and extremely sliow process. The sdoption of national and international

) standards, while consistent with DoD policy on voluntary standards, wouid delay the

introduction of modern software engineering practices In US. defense systems by
::: ' 3-10 years. The development of moderm softwere engineering pncticesww
"y standards, and the resulting lesdership In software engineering, Is fundamen .:
Vi the United States defense strategy on the force multiplier concept v
® therefore, must be aggressively pursued.
o stancards
- Beyond commercial software requirements, the deferee softwere
.:i‘ must siso emphasize aress unique to the defense systems, wch as -::ﬂz and
A phased acquisition life cycle of defense systems. At the same time, senee
SOl
. :
R &
i
"-§
(LA
L
2%

|
iy
o) . o
“. - - Y - \ . S PLY o LY W3 ‘.| l\r‘\-lu- \" ' - ',.“" \ " L Y > e S .) "
At o 4 O T A A A R SO K MR

o

@

,’l.'l

v

f:'::b software standards should maintain compatibility in direction with national voluntary
" standards in areas such as commercial and reusable software and coding standards.
2 @ Additional defense software requirements also exist internationally to assure
el - compatibility with standards within the NATO defense alliance,

;3::;5 B. A SYSTEMATIC APPROACH

iy

::-‘:, The IDA focuses on the root of the public review comments rather than fixing
:':c,‘ only the locally apparent preblems. It considers conflicting goals, as well as
X slternative methods of solution starting from ~sw comments, to root concerns, to
) the Dbasic lssues. Once an Issue is identifled, It remains on the list, permitting
*'gag traceadility and follow-up to assure Its continued resolution. The IDA makes the
:i.::t. complex process of Integrating the diverse and conflicting factors manageable
.-:0..'0 through an incrementally evolving negotiation process. Further, this method
,;:t::' provides a mechsnisn to assure currency with technology and changes In policy and
! business practice. The IDA is based on three major activities:
{_ o Analysis of raw comments and bottom-up synthesls of concerns and

I'l:: Issues,

it © Top-down analysis and resolution of issues and correlation with

;:,‘:‘ other issues to resolve conflicts and assure overall compstidllity,

N © Review of detalled comments for esch section and paragraph, and

° implementation of action Iitems resuiting from Issue resolutions

‘N which Is accompiished by rewriting affected sections and paragraphs

: of the standards and DIDs,

“r

e The five levels of the IDA structural concept Is depicted In Figure 2-1t
-4:" fundamental lssues, lssues, subissues, concerns and comments, The number of

R elements at all five levels st the end of CODSIA review cycle are summarized in
(... the figure. As the IDA structure Is fundamental to the spproach, the individual
' levels are defined next. '

l. FUNDAMENTAL ISSUES

oo T
e Y

)

s"ﬂ

E:.::!' These broad and pervasive Issues sre the primary MCCR life cycle cost and
) scheduie drivers and are the basis for many industry’s objections to any standard,

:;;-; inciuding DOD-STD-SDS. They ares

", 3

::’é' o Significant and unnecessary cost escalation (cost drivers)

N

e © Unnecessarlly constraining and restrictive

'lgl 3

A0 lsolation of software from the defense system and system

‘ ' engineering process

X 2.' © Excessive data requirements

O,

. o Generally little corrective action can be taken at the fundamental issues

b leve!, as these issues are too broad and pervasive. The fundamental issues are

' mapped into & number of different issues at the next lower level.

,.' 2. [ISSUES
,

W Issues are manageable areas of dispute, concern or controversy as grouped by

y ¢ lite cycle, technology, methodology or project management considerations. They

’h,(

,

g dn

o ‘

Wl

& 329

@

\‘;:Q

Ao

f‘!b.

Q , 100 gt i gVt Fa gt i Tav) Tl 0y
NN AR R WU AN TR RN A OO A LU RS

()
X

K~ e
» '.\“:?\‘.fl’c!t‘o‘.l'cv,"n'lpa’?l':?i‘:‘.l.M!of-",n..i'

" OOOB0BO00608
B AR IR DL RAN A AHANGAEACIN

WA WM ENEARAFFANAGFATFAEAENENSIAATLE 7 TR ThWE T ‘

" SDS DEVELOPMENT APPROACH

ey 4
20 v PUNDAMENTAL ISSUES : 3
o (ORIVERS)

P

ISSUES 1]

- O"f‘."

o

LA

SUBISSUES

N
A,

o~

LA

N2

TOP-DOWN ANALYSIS
ISSUE RESOLUTION

CONCERNS (PER CYCLE)

BOTTOM-UP COUMENTS
DISPOSITION

e

COMMENTS (PER CYCLE) 13 000+

s
/2

Y

SDS DEVELOPMENT IS BASED ON TOP DOWN ANALYSIS
AND BOTTOM-UP COMMENTS DISPOSITION

X

AW

.

et
A !

S
22

Figure 2-1. SDS Development Approach

ol

el
]

Lt 330

. " c P i S ¥ § {) " DO XN
N R et A e ey ety Tl At g el o M A O OO O XK A SRS A LN

A

-C .
SN

AR
AL

-—-”.“. 3
-’_. ?-

R R 0 » v AT AP A W 9 f.. 0 O '\ OO0
IO "“.:'".n",t “. '.’, X Y O M) TUR N M ¢ «."c. W A’,‘:\,‘t'y‘l'.'c‘a,‘l‘._ OGOGHICOOOOCOSIITIOO W

frequently correspond to general or essential comments received during the SDS
Package review. A total of 33 issues were identified during the three CODSIA
review cycles. These issues are discussed in Section 3 of this report. Most
complex SDS issues cannot be resolved at the issue leve! but must be further
subdivided into subissues for their resolution, Issues represent a permanent
structure and are continued through the different SDS review cycles to verify their
closure or to provide for future technology insertion and changes,

3. SUBISSUES

Subissues are the logical substructure of the more complex Issues,

&, CONCERNS

Concerns are collections of related sets of detailed SDS review comments
received for each review cycie. They exist only for the duration of the specific
review cycle. They are frequently related to s specific SDS section and paragraph.
Concerns may be wused for making Implementation changes to a specific SDS
paragraph or mapped into the permanent structure of subissues, where they become

part of an issue which may relate to a large number of paragraphs cutting across
dilferent standards and DIDs, .

3. COMMENTS

Comments are the detalled raw comments recelved during the SDS review

. process. They are usually referenced against a specific pacagraph of the standard

or DID. Frequently, comments are only symptoms of the more basic lssues which
cut across the standard(s) and the DID(s).

o mnm.mmmm

The development of complex defense standards In areas of rapidly moving
technology is a significant technical and mansgement challenge. The standard must
not only be technically correct and dynamic but must aiso be broadly accepted and

supportzd across a wide spectrum of deferse applications and functionally different
viewpoints,

Defense standards are usually draited by a single Indlvidual, a single
contractor, or & single servica or agency component. For example, the DOD-
STD-2167 draft was developed by DRC and the original set of DIDs by TRW,
Much less frequently the standard Iis developed by 8 DoD or Industry working group
or a joint DoD end Industry working group. The writers frequently lack the broad
spectrum of viewpoints and experiences necessary to draft a technically sound and
broadly supported standard capable of implementation across a wide and diverse
range of applications. (The esrly drafts of DOD-STD-2167 and the related DIDs
are good examples.)) It Is questionable that any single Individual or a single
organization can produce an acceptluble document in isolation.

The development of a draft defense standard ls followed by the coordination
review process, Industry and DoD comments recelved during the coordination
review fall into two categoriess general and detalled. The detailed comments are
teferenced against a specific section and peragraph, while general comments
frequently have no paragraph level references,

331

3

Wy tlpeted O

*

........

onRs

4 - - g PR . o) Sal a9 AheAts it dY 4 a8 % i e GVa A0 A% gia AR AN AR AR SRl G0l Uah B8 dag .0 0,04 Y
N ,
RON

‘o"o.‘
f::?o:.'

®

R

l.-x‘
»’-\ﬁ The comments received are usually processed by the same individual or
NN organization (having a single viewpoint) which drafted the standard initially, with no 4
:.:.'-j or limited independent checks or balances provided by the system. The speclfic &
" comments are processed by rewriting the referenced paragraphs of the standard.
{) Ceneral comments are usually too difficult for corrective action and are frequently
~ :-\. discarded by the process as too broad or too difficult to resolve.

X
:jl'» As was vividly demonstrated during the first review cycle of SDS, the abow:
::,.{M, described approach In the case of complex stancards In 8 dynamic technology area
N can result in & fallure of the system to address the substantative lssues contained
Y In the large number of conflicting and competing comments. 1t Is In this ares that
e the joint steering and negotlation process by JLC/CSM subgroup and CODSIA Task
SNU Group made a major contribution during the CODSIA review cycle. In identifying
. issues, resolving conflicts and developing broadly based solutions and thus providing
Lt guidance and steering to the SDS contractor developing the detailed impiementation
e of the standard and the related DIDs, a significant Improvement was achieved in
(“'- the consensus development process.

o The second major contribution to the SDS process was the informal ac>ptien

<

by JLC/CSM Subgroup and CODSIA Task Group the broad principles used by the
ANS] standards development process to assure due process and Industry and DoD

e

o
Ry
::‘

,._‘E: consensus. These principles are summarized below:

S

‘ ® ° Due Process

For - Everyone with Direct and Material Interest
[-

(7" - Right to Express a Viewpoint

,::.-l:: = I Dissatistied, to Appeal Any Point

PG

P
]

Equity and Fair Play

(. . wl
B o Consensus

;\j - Substantial Agreement

e = More than a Simple Majority

7

v
Lo

- Not Necessarlly Unanimous
- All Views and Objections Considered

O

o - Concerned Effort Mace Towards Their Resolution

.

o - Formal Voting Evidence If Required
S

:;':':: 0 Other Considerations

e. - Conflicts Resolved With Other Related Deferse Standards

"::':: - Avold Propriatory and Product Blas

e ' WCLUNTARY STANDARLS

D. EFPICIENCY AND EFFECTIVENESS CF THE VCL

- PROCESS

'S The foliowing activities and principles reflect the “lessons ws:o-hs.; |
contributed to the Improved efficiency and effectiveness of the COD- 1
ey development process

. l. SELECT PANEL REVEWS

i :::'.

E
\-' 2

N !_':;v

s

o 332

o

1;.‘

¥ | ‘ |

:? g D N 2 D DR R T A O K S A DR KT IO

i?‘.l Premature release of draft standards for general public review and
g coordination should be avoided. The use of joint industry and DoD Workshops or
.@; selected working groups to review the early drafts of the standard avoids a large
K '~ number of unnecessary comments during public review and the related processing
e costs and time delays. Such working groups need to be carefully composed to
:"‘I‘ fepresent a balanced cross section of the industry.

‘.l
;; 2. USE OF CONTRACTORS FOR STANDARDS DEVELOPMENT
)
R The use of full time contractors (e.g., DRC and TR for DOD-STD-SDS) has

-4

significantly sccelerated the process of developing complex defense standards In the
voluntary ANSIi-like process,

T 1 -

3. USE OF DOD AND INDUSTRY STEERING CROUP

The use of JLC/CSM and CODSIA Task Croup as the technical negotlations
and management steering group for the DOD-STD-SDS development has significantly
Improved the quality of the standard and the process of consensus development and

',::: ! due process,

o S

::::'0 o, USE OF INDUSTRY EXPERTS

‘;' ..)’ .

%:;:u, The use of industry volunteer experts as specific issue coordinators and
) problem solution developers has significantly improved the quality of DOD-STD-SDS
;.pa;v ond provided the necessary technical support to the CODSIA Task Group. This
4 technical support base should be further expanded to support the Revision A
f

Wi development effort,

" 4 .

::".,' E. ACTIVE VERSUS REACTIVE STANDARDS CEVELOPMENT

,’) (ﬂ_ There are two basic aspproaches to standsrds development: active and
,gl. ‘ reactive documentaion, Active standards are planned, resuiting from forethought as

to their need and content. An excellent example of active standards development
Is Mr. Ford's dual role as an Inventor of 8 mechanical wagon and a developer and
promoter of traffic standards for his horseless carriage.

ot sl

e

'-’E‘”E o

®) Reactive standards result from 8 need for some controls after the new
M Invention or product has been Introduced. Current generation DoD software
W standards such as MIL-STD-1679 are & good ezample of reactive standards.
i Software, for a long time, has been considered more of an art than engineering
X science. Therefore, software practitioners frequently cbject to attempts to
b establish software standards as excessive constraints to their Intellectusl and
M Creative process. As software practice matures, and lts economic and public safety
o Impacts expand, the demand for software standards I3 escalating In both public and
;f,l'. private sectors,

S'..

:"l'l As & result of DOD-STD-SDS development, 8 fundsmental change In defense
Ny software standards development has occurred. The defense Industry has moved
v, from resctive standards development In 1979 (Monterey I) to active standards
® development In 1933 (Revision A). As Is evidenced by the lssues addressed In the
Y Revision A effort, such an artificlal Intelligence/expert systems (AI/ES), we are not
;k\, only correcting past problems, but sre also beginning to pian standards for
':‘:;. advanced technology pucuce.’ Certainly, It I3 much Jess costly to plan and
w implement standards along with the creation of a new product, process or
o

S

:l“t

o

e

N 333

0

X , . 7K : - i
) oW 0 TR e T g TTa 1) AT U Tty VgL, 01y 05 30y 1y U1, B {0 ST RS, 00, Vg 3% AT CL BV, TRV .2, QAT AT,
e ettt Attt i alnddnstnatiplrataliial it i e il gt al el e e

kA%, bl

TRV !ﬂ‘!’\“““““l—"-“ﬂ

.
"
%)
L
] technology than to have to write standards later to solve problems crested by the
N new introduction, .
o 'Eﬁ
Eay There are two basic positions that defense industry can take with respect to
: software standards developments active and reactive participation. Traditionally,
L1 most defense standards are the result of developments by DoD personnel. The

,,}3') defense Industry generally participates only In a reactive review and comment
250! mode, The current generation DoD software development standards, such as MIL-
’ STD-1679 and MIL.STD-1644 were developed In this manner.

A wide variety of software Categories, software development practices, and
participant's viewpoints must be sccommodated. No single individual or
organization has all the required Inaights to develop an scceptadle draft document.
Close and active DoD and Industry participation Is absolutely mandatory If
standards satisfactory to DoD user and industry developer sre to be produced and

e o L
-
-

N kept current with changes in technology and business practice. Without active
i industry participation, the software technology Is moving faster than the rate at
b which mutually acceptsbie standards can be developed, coordinated, and approved
v by the DoD alone, .

~»-
," }'. The development of the DOD-STD-SDS Pacage over the last ¢ years, as
) t: documented in this report, is an outstanding exampie of such DoD and defense
.12 industry active participation and cooperation. The initial relesse of the DOD-
STD-2167 Package Is not a perfect document, as s evidenced by the mumber of

. open lssues for Revision A, At the same time, & review of other national and
g2 International software standards development projects clearly indicates DOD-
‘-,'f. STD-2167 to be & better and more cohesive standard than any other set of
oo standards currently available or in development, .
iy
4 DOD-STD-2167 Paclage satablishes the basic foundation for mext generstion “ﬂ
".' defense software standards, This foundation will be Improved by revisions based on |
0 technology evolution and Implementation experiences with the initlal DOD-
“'5; STD-2167. The DOD-STD-2167 standards foundation will also be expanded as the
N other DoD software initiativem Ads, STARS, SEl, and DARPA Strategic Computing
" Program become more closely coupled with the JLC SDS software Initiative. Many

> of the unresolved longer term Issues I[dentified during the DOD-STD-2167
;)’ development will be resclved by products and R&D activities resulting frem the

e other DoD software Initiatives,

\.‘_.'.
:'.j F. TECHNOLOGY TRANSITICNING FRCM RaD TO BATTLE CPERATICNAL
- ENVIRCNMENT

O; CODSIA Task Group 13-32 repory to USD(RAE) entitied DoD Manarement a¢
- Ts Mission - Critical Computer R observes that wechnology transitioning from
ey RID to batile env!rom"en!g;l exceedingly siow and a major lssse In MCCR
-:-{: management. Timely Introduction of standards and thelr evolution with technology
oo Is a primary vehicle for assuring technology leadership and operational effectiveness
‘ol In the battle environment,
.r The IDA, a3 demonstrated dy DOD-STD-2167 development, provides the
:'7: mechanisms for evolving defense standards as s function of technology Ml*d‘g
' :: the public and private sectors. [lisues such as ALES (Isaves 36 mmug:\‘ee
:}f; combined with SDS revision process and implementation In the fleld prov a
s
17049

. !
2

':,

XN 334

ad s
b R B e

N mechanism for technology transitioning from early guidance to preferred practice
and finally to enforced standards.

e @ Many of the Issues identified for DOD-STD-2167 Revision A are [dentical to

the issues belni addressed longer term by the DOD software initiatives Ada,
si::' STARS? and SEL® The coupling between these jnitiatives and the JLC software
e Initiatives for initial release of DOD-STD-2167 was minimal due to the early stages
al of these programs., As the STARS Program and the SE! becomes operational,
48 considerable additional coupling and use of their R&D products Is expected for
W Revision A and subsequent revisions of DOD-STD-2167,

i 335

OO OO RN)
bttt KIIAGCONCAOGNY

o

DA

OJVAI A WO K, AL rphade %) 4% 4 ¥ g 00, T8 Ry g) g 4T
Vel ‘*"’“.=-'~‘ ORI “:5'6’:',':0"fo’*’.q’,‘:t'?f T adtdninitdmliiinil gttt

Y
b abfy IR N N 4o teh RSN AN

KRR

TS ---,-n“-w-mw“mu'MIWHMMMﬂ
B
A
hd
t.:'
s.i: SECTION 3. SDS DEVELOPMENT ISSUES
)
:::3 \ _The SDS Package is the product of an extensive public review and
!,q‘.,_, Participation process which required the resolution of s large number of complex
\ and conflicting factors. This resolution process and the detailed rationale used for
Wiy the resolution of the 33 specilic issues identified during the three SDS Package
g review cycles is documented in CODSIA TTk Group 21-33 Report on the DOD-
-;j STD-2167 (SDS) Package Coordination Review' dated November 1985. . .
) "o
Y Not all of the issues identified during the SDS Paclage evolution were fuily
V) resolved at the initial release of DOD-STD-2167. A number of Issues were
:;.:. resolved based only on interim solutions. Revision A work i3 continuing for their
NOD full resolution, as well as a validation that the Issues conmsidered closed at the
..;:.ﬁ: point of initial release of the standards package are sctuaily closed based on field
S
r""" The purpose of this section is to identify the 335 issues Iidentified during SDS
A package evoiution and provide status as to their priority and resolution. The 33
1 o issues are identitied in Table 3-1.
O
g A. ESUE STATUS AT THE BEGINNING CF COOSIA REYEY (CYCLE 3)
,0 O
i Analysis of the industry review comments at the beginning of review cycle 3
® revealed several dominant trends. In addition to making comstructive comments,
K] the participating companies expressed their positive reaction to the successive
Y drafts of the SDS Package. Some respondents observed that the draft was aiready
}‘,::.':. technically superior to the various existing standards being imposed.
.\. A
;:"n In the area of constructive criticism, one dominant thread was the conviction
S that the standards would result in a significant and unnecessary cost escalation if Y
“EYE released in their December 83 form. Although 8 serious and fundamental issue, the 3 |
1 si CODSIA task group decided these concerns were ciearly identified and remedial
,gQ.a action couid be taken during the review process. Toward this end, the group
0. identified eight primary Issues and nine secondary issues for resolution. The cost
N drivers were included in the list of primary issues.
i o
D) The eight primary fssues and their tracking numbers are listed below in a
ng
LN priority order:
\J.:,:
s:_'-’. 1. lssve 251 Tailoring
ST
b 2 lssue M1 Software Deveiopment File (Allas Folder)
'Y 3 lIssues 16, 17, 13, 211 Informal Testing
4:. :. A, Issue 71 Ada)
Fo Y 5. lswe & Firmware !
-\.f. 3. lssue 61 Systems Interface and Isclation of Soltwere
. 7. lswwe 831 Automation
i 8. lIssue 27: Revision Strategy
Wity
9y Although significant changes were incorporated in the SDS Package Gated 3
e December 8)) to rescive comments about SDS being too constraining and restncCiive
i '
o
R, a3
i. ‘?
'5-,)
D)
e
A 336
L/
.“"
a4
::::::' Al e \':f:".!':7:*!?:':?:‘:?-'? , Jh._.a‘..c'.?l':ft':'.I':,.l'c?':?:?.’:;:'A':'liz,a‘u,':9:':!.'!‘“’!“:?-‘,‘0‘&'?;‘-?:'!ﬁ‘!'""t‘:‘a"":‘!’a‘i'u"»'t‘?'6"““!’%’?"?"'?

lﬁs

)
¥

T et

()
IQ"

5

o Supisodas/Jupden 180D o¢ e

o) vonie2ivedio SOS 44 v

X bo | wot e2|idde/adodg [14 =

b { tvd £3n s voinses sQsg a1 =

X) AS 9QEINII/|TIMIIWWOD) o

X d Pvddv Suliofin] et

x bo spsspunrs Buipo) w2 Hl.ﬂ,

(8912)x X sovmansse Lyjend) €2 e

X o} Vo BUIWNIOP 153 ¥ SIS u o5

X [T} vonwulavt » 1531 12 L

X o) spaspuns/Adiod Jas Q10 . ot o

X o suj|seq 1Onposd 6l o

X (e Supnsa Jeuvoy M =

X d Jupsn (suno)y a =

X (1) vondiideap 1831 91 -

X) SIjANSe D7 10 Jupeyg I £

X 1 waa0d I ol o

X s £3ojoporpow ulinag 0 =

X o Vol Jo §[sAN] 3] o

X o) VoIV ap BN ONIYIY 11 [N =

(&)X X v Tfpwnna ¢6v-0is-Un ol « <3

X (v)d £3n8as *duy §OS ¢ -

b 4 X d . usawNg] >

X d : L4 ¢ Cel

(171)) ¢ X x d 2JEMIJOS ENTIIA oy

Susaanua swarsig 9 s

X 1 wop{sibw Lewonnjoay 3 ==

b4 ¥ Supuieaisuod 0oy] s

X X 1 &npeuiseddng 4 =z

1{$114} ¢ X s sdpguonsiay sOS/SOS 2 =

x .) 5010 1WONPPY 9 1 =3

¥y SRS R NBAH v Ady >3y T Te) STPTIRY WO 0123830 anss] “ON e

wiog 4504 wuav)) 1211) vI$00D anis|

380 vado p:oLD

REpHTA-PROID Kjjvpang

(€361 3INNL 9)
DA ATIAIY VIGOD - SANSSI 4O SNLIVIS TVNIA 4O AVVRANS

REE 1173

Joint
Reg

Closed-Validate
Other
Policy
& Stds

HOBK

Rev A

(Interim
Release)

Open

BLE 3-1
SUMMARY OF FINAL STATUS OF ISSUES - CODIA REVIEW CYCLE
(¢ JUNE 198))
Closed
awc/
CSM)

CODSIA
Priority

Issue Descri

No.

(SRPRSASNS,

Program support lidbrary
Baseling management concept
Specmanship/relation :

Oelinitions
Formal qual??? review

N
b}
»
»
]}

srchitecture

nit development lolder

Security

SOS versus DI0Os detall
Soltware acceptance
Additionsl DIDs
Subcontract sppli???
Fragmentation (mgmt

Desl

Automation’

3
»
3
)
]
2
)]
(1]

U N D2 gt A ()
3 ?4’ ",A’}.»’bts'ﬂ-' ..s'l.nt'?-"‘,a.’.':&."- . .A"‘,Q"’\"'?t’,l l.,.‘t! ‘..0’)*.0'.‘“

PO ETA

oy, ST,
<nUr»
-4

Capacity mlety marging

Edivorlal

Unclear

&) 'y, R
* w’:t"!‘ fs |‘.‘ J!,. ﬂ“ 40? 3

pC 3¢ 3¢

k]
FUUEL

Requirements tracesbility
CRLCMP interface
MIL-STD-4%0 B1/Ct
Excessive data

TOTALS
P - Primary
S - Secondary

T -« Tertiary

n
3
n
b}

LK IO
RGN

« Action

R(X) - Remapped to isswe (#)
« Closed

A)

Cc

KEYs

M)

D
BOAMDOS MM

i

(Issue 8), this fundamental issue was still a dominant concern among industry
reviewers who characterized the package as having too much how-to direction, and
verging on micromanagement in other areas. However, this fundamental issue was
considered too general for corrective action and was mapped into three specific
primary issues:

0 lssue §2: Software Development Folders
° Issue 17: Informal Testing Constraints
o lssue 71 Ada® Suitability/Compatibility

By successfully addressing these specific issues, the fundamental issue of being too
restrictive would be substantially resolved.

Some respondents noted the trend to lsolate the software development and
scquisition methodology and terminoiogy fram that of general systems engineering °
and system acquisition. The structuwre of the SDS activities f(e.g., absence of
requirements generation methodology) and associated policies are perceived as
exacerbating this situation. The Task Group decided to address this fundamental
lssue, which requires significant work, in a future update to the SDS Package. The
decision to postpone problem solution to a future update merits some elaboration.

The CODSIA Task Group recognized two cClasses of action recommendations:

1) Short term action - temporary solutions to problems requiring
extensive technical work for incorporation in the Initial release of
the SDS Package (b June 1983).

2) Long term action - the f{inal soiutions to problems which require
further technical weork, and which are expected to be implemented
n subsequent revisions of the SDS Package.

The Task Group created this distinction because of pragmatic consicerations
relating to the need for early reicase of the SDS Package versus the time and
effort required to research the changes. Therefore, a revision to the Interim
Version is essential, and the Revised Version should be Impiemented withun 2 years
(i.e., June 1987). It should also be noted that these deferred issues have not been

more effectively addressed in any existing software development stancard, so the
new standard is nct & regression.

The priority of the 88 Issues identified by the beginning of review cycle 3
was estadblished by the CODSIA Task Group besed om .
° The Impact of the issue on industry practice.

° The asseasment of the issue status as to its resolution based on

Industry comments received snd Task Group review of the SDS
Package.

The relative priority of the Issues, based on the December 198} draft, was
Categorized asn

o Primary (3 issues)

$ ACY |3 3 re=iztareg tracemAary 4 e 112, Coavermment Ady Joimt Drcvram Offles,

339

¢ (] (AN

) 0 Y UMLK 1 g gl ¢ U b st s LS T L
"gof"a;4’:’&’:.'t’!"a‘?ﬂ'v‘t’.f;‘:.Q’f"“,i‘-q?l*-!G%’I“fi'efﬂ‘s'.l'-!"a'l’»'1‘:.‘t'xai‘.f"n-""-"nf*‘v?‘0’sf"kfi’qf‘v’~""”é‘-"«"" RSSO

L

iy
-

=

L5

X “t'.’ = [g 4

SX g

P

P

. OV NN N,
RO N ?;‘--.‘?h‘f:t‘!l‘.i,t. ’

>

° Secondary (10 issues)
° Tertiary (9 issuves)
o Closed (13 issves)

Remapped (& isues)).

Issue & (Too constraining/restrictive) was comsidered a fundamental issue and

excessively broad for corrective action and was remapped into issues number 7, 16,
17, 18, 21 and &{,

lssues 16, 17, 13 and 21 addressing test related lssues were collected under a
single issue 16. .

B &GSTAMATMWGSOSPACKAGWN“M

The status of iasues at the point of SDS Package initial rejease is summarized
in Table 3-1. The status table includes 42 issues identified duwing the two previous
review cycles. [Issues 83 through 35 were added during review cycle 3. The table
identifies the CODSIA priority of all issues at the point of SDS Package initial
release: primary, secondary, tertiary, and closed. The closed issues are subject to
validation based on fleld usage feecback. Partially closed issues [ndicate the
proposed resolution strategyr Revision A, MIL-HDBK-237, changes to other policies
and standards and revisions to Joint Regulation,

C. LIMITED COCRDINATICN AND PRCPOSZED CHANGES

Three sections were added to the standard during December 1984 with
essentially no industry review because these section were Created 8t the {inal stage
of the review process, when time did not permit their wide circulation. The three
sections in question are:

° 3.3 Software Quality Evajuation
° 3.9.1.3 Risk Management
o Appendix D Talloring Guidelines

The first two were prepared by the Government contractor (DRC). The COCSIA
Task Group objected to their inclusion (particularly 3.3 which is voluminous) without
adequate reviews. Those objections were overruled however, and the sections were
inciuded in the standard. The Appendix D was prepsred by Mr. O. Golubjatnikov, a
member of the CODSIA team, but was only reviewed by the members of the team
before being offered to the Government for inclusicn. It Is recommended that
each of these sections be given particular scrutiny during upcomiry reviews.

An Appendix E, "Application Guide and Example for Development of Prime
ltems and Critical Items that Contain Scitware and Firmware Cunpomts‘:mv::
also prepared by the EIA members Messrs. O. Golubjatnikov and Join C. MMIBZ
the CODSIA team. This sppendix specifically addressed the MIL-STD-4%0 ‘
Issue number 34 and the reiated Isolation of scitware from the system md::'m"a
process. This appendix was voted and unanimously approved by EIA member n:t'
but did not receive unanimous CODSIA Task Group approval and thus was
incorporated in the inital 8§ June 1985 release of DOD-STD-2167.

340

wl

s N G S ‘ X QU
o R R N o R R A T e T e e e A e e DT SOl

o

x..

‘ SECTION 4. SDS IMPLEMENTATICN AND PLANS FOR REVISION A

o .

"‘:’u Q& The SDS Package was approved by DMSSO for DoD-wide usage & June [935.
!‘. A I The smooth transitioning from a wide variety of currently service-unique and single

program software acquisition practices to the uniform DOD-STD-2167 practice and
n its successful implementation and evolution with technology advances in DoD and
;& Industry depends on:

4

" l. Training and tallored application of the standards package.

el . Z Fileld monitoring and Implementation feedback to avoid misapplics-
. ton of the initial verison of the standards pecikage.

) 3. Continved development of improved solutions for Issues closed for
R the Initlal release based on Interim solutions, ’

;:::: 8. Continved evolution of the SDS Package through technology

Insertion from public and private developments,
s A. GOVERNMENT DOD-3TD-2167 IMPLEMENTATICN PLANS

The JLC/CSM Subgroup snd the Services have Initiated a DOD-STD-2167
) implementation program. The major elements are:

bt ° :LCICSM Subgroup DOD-STD-2167 Implementaticn Concept/Strategy
® lan

~ Service-unique DOD-51D-2167 Implementation Plans
- © DOD-STD-2167 Training Courses at executive, management, and
; :: technical »levels
k © DOD-STD-2167 (MIL-HDBK-237) Handbook development
o 3 0 DOD-STD-2167 "Help” line (with level-of-effort contractor support)
:" o DOD-STD-2167 Implementation Feedback Survey of current users
‘S' ° DOD-STD-2167 Implementstion Evaluation
.::: o0 Industry and Government Briefings and Tutorials
3 © JLC Vorkshops (Orlando II)

it As an example of the effort applied, during 1934/1933, the JLC/CSM Subgreup
z:‘ slone has given over 25 briefings and 3 tutorials to Industry and Government on
p the technical aspects of DOD-STD-SDS package.

. »

) B. INCASTRY LOD-STD-2167 IMPLEMENTATICN INITIATIVES

“ To provide proper DOD-STD-2167 Introduction and assure its continued
. evolution with technology and fleld feedback, the CODSIA Task Group 21-33, the
. . Industry assoclations and the individual corporations are taking numerous actions,
> The following are examples of Industry DOD-STD-2167 Initlatives.

S ° Joint Industry Conferences and Tutorlals. During 1938 and 1933 industry
c assoclations (AIX, Eﬁ| WSIXT and professional societies (QEEE, ACM) have held

’
numerous joint Industry conferences focusing on different aspects of defense

]

)

R software. These conferences offer papers on DOD-STD-2167 and DOD-STD-2163.
.: Some conferences have also offered U-hour tutorials on DOD-STD-2167, DOD-
'y

[.

WAl

..:

o

s 341

o

DOONONOBOND O0ROGO00
WIS AR RIS AR SRS SRODOAEACI

EOOOOGIGOO00)
A

)

l.'.,: lrl,l&

Y

e AT AR

E o P A

‘.:-.v ,.

_.
RN L

TN

STD-2163, and Software Standardizaton Activities, Additionally, the DPMA has
offered two-day tutorials on DOD-STD-2167 and DOD-STD-2163. EIA s also
offering DOD-STD-2167 and DOD-STD-2163 tutorials during its annual EIA G33/34
workshops. These industry association initiatives are epected to continve,

° EIA Workshops on DOD-STD-2167 and DOD-STD-2163 Develooment. EIA
conducted special panels on an] cevelopment during
its annual EIA G33/3¢ workshops In 1981, 198), 193¢, and |985. These workshops

are attended by both Industry and Government personnel and complement the JLC-
sponsored (Monterey 1, 11, and Oriando §) workshops on DOD-STD-SDS development.

These workshops provide sn oppertunity for Government, Industry, and
azademic personnel to sddress specific DOD-STD-SDS related problems and issues
and participate In the DOD-STD-SDS Package development process. The EIA
workshop panels are led by CODSIA Task Group members, Industry association
reviewers, Government DOD-STD-SDS centractor and JLC/CSM Sudgroup personnel
and provide an excellent forum for resolution of problems and development of
recommendations to the software standard. Theze amnual workshops are expected
to continue. .

° Industry U de of InHouse Software Stancdards and Procadures. A
number of companies En arug adopted, on a voiuntary cais, COD-3TD-2167 as
their in-house software development standerd, These companies have acted as
DOD-STD-2167 test beds and provide useful feedback to the SDS Paclage
development during the second and third review cycles. More recently, other
companies have be to upgrade their in-house standards and precedures to assure
compatibility with SSD-STD-Z!G? requirements for contrsctual compliance.

o Industry |m entation of DOD-STD-2167 Environments and Automation
Tools. Tri-service su%ri?uﬂm on & sngie software cevelopment siandard with
2 consistent set of DIDs crestes an environment conducive to Investments in
software development automation. A number of companies have ongoing eiiorts to
automate the generation of DOD-STD-SDS required products. It Is ev~ected that
such environments and sutomated tools will not only be cperated Internilly by the
major system houses, but will also be offered, as procucts by houses specializing in
marketing software tools and environments,

C. ASSZSSMENT C* DCO-STD-2167 INTIRIM RILIATX ,

The esarly applications of the SDS Package on Government proposals and
contracts provides an opportunity for 8 detalled assesament of the peckage, as well
as s detailed validation of proper implementation of the lssue resolutions. Both
JLC/CSM Subgroup and CODSIA are planning to establish a joint data collection
mechanisms 30 that the feedback from early applications can be promptly evaluated
and the required corrective actions Initlated during the Revision A cycle.

The Iimplementation of joint JLC and CODSIA issue resojution agreements
during the coordinstion review remuired a large number of changes. The language
for these changes was largely Implemented by the Government contractor, DRC and
reviewed by JLC. The development of the last two versions of the documents set
were driven by DMSSO requested changes and had no COLSIA perticipation.

The development of the three document set versions prior to the last tweo
versions had only limited CODSIA review becsuse CODSIA was acting only in an

342

O RO N W

WY W 0 ” ? \ OO ()
R A REAL IR G bk, 1T R T G0 Sttt e N i uslthn ittt et ate) S hglnhe

of the specilic issue and concerns,

®
Y
2
; advisory capacity. These reviews were further constrained by tight release
:v,‘ schedules. Therefore, with the public release of the documents, it is essential that
;::.c _p.:f-_ 8 detailed review be conducted to validate the Issues and concerns that have been
e - sgreed to by JLC and CODSIA. This document provides a baseline on the status

:'i One corporation conducted a detailed review of the January 30, 1933 version
RAS of the document and concluded that several of the Issues considered closed by JLC
!\ and CODSIA task group are, in fact, not yet fully closed. The specific issues
§

A Involved (16, &1, 0)) are prloritized as “"resoived in principal but require
Y refinement.® Such reviews should be continued so that the necessary corrective
’i::‘i action can be taken through change notices or Revision A to the standard,

1
Z:Q D. SDS REVISION A OVERYEV AND MILESTGNES
Eh)
s At the point of Initial relesse of DOD-STD-2167, a number of lssves were
N resolved on an interim basis only subject to further R&D. This section describes
(the initial CODSIA plans for the Revison A a3 coordinated with ILC/CSM Subgroup.
e The SDS revision process Is envisioned to be an ongoing activity leading to future
1: revisions,
:::2:: Revision Process Drivers. The development of SDS Revision A Is driven by the
:_::n:l Tollowing Tive major sources of actlvitiess
LN
', ° Open lssues from the coordination review (cycle 3)
j::,' 0o Feedback from early fleld usage of SDS Package
;E’.‘ © STARS program and Software Engineering Institute (SEI) research
3‘) and development activities
R ° Ada technology and practice evolution _
f,;. Q., o Evolution of software engineering technology and Industry practice.
"y
o ~ The Revition A process provides an interface to the above five major source
“' of activities and converts them to the evolving set of SDS Issues. The Revision A
5&:. process consists of the following four major sctivitiem
i o lcantification of the lssues
;:o" “' © Analysis and resolution of the Issues
. © Draft Revislon A development and coordination
:::':3 © Revision A implementation and fleld feedback
0 Revision A Milestones, The Initial set of major milestones for the overall
;:.:'. Revislon A process are:
i
;i:: o ldentification of lssues
Wy :
n o Initial Set of Issues May 83
® o Formal Coordination lamses Jan-Oct 84
0l © Rev A Ilssues Baseline Sept 33
"y o Feedback from Fleld Use June-33 - Mar 36
oy © CODSIA lssues Paper Oct 83
:.:,: © STARS Program and SE! Requirements lssue Oct-Dec 33
'\!:':0
. £,
r.';:; e
A
i
o
A".‘
) 143
®
iy
;’:s.r

s, G HOOON0 G i A . e ATy A% W8 1, a0 AT Y, T T T g T TR T e
ALY b I A R O O ORI *,:'O!Q'Qe'lfe‘l:e,l:af‘t«‘,':!"?!?ifo'ﬂ:u".\fl,v'he"',:','.a"l&»’ﬁ.w'_& ORI NI IR SR

R0

iy

;$ ' Definition and Coordination

i

::E 0 Analysis of lssues ﬂ

- " o Proposed Resolution of Issues Received from Jul-Dec 85

o CODSIA Focal Points and HQ AFSC Staff

'\':;t‘ © Analysis SOV Prepared Sept 85

p 0 Analysis/Revision Contract Awarced Oct 83

,o, o EIA St. Louls Issues Workshop 16-20 Sep 393

'.:3. © Analysis Completed Mar 36

\

::;::‘, o Coordination/Implementation of Revision A

0!

::n:::: o Preliminary Draft Jun. 86

KR © Review/Coordination Dec 36

Lol © Implementation June §7

4

‘;\“‘1"{ Revision A Objectives and Coals. The specific geoals of the Revision A

aty process are:

o)

::g‘ © To validate the detailed implementation of lssues coraidered to

W have been closed in the lnitial release of the SDS Package.

hd © To close off the open lssses remaining from the coordination

'."" review cycle, A number of Issues are partlally closed while other

-' open issues have been resolved based on Interim solutions only.

i

e © To provide feedback from early fleld usage of the SDS Package and

20,7 Implement corrective action through change notices, Revision A and
~E Handbook changes, a

Wy © To incorporate early RAD products from the STARS program and

B the SEI. Provide STARS am direction for SDS areas requiring
Wyt progr

R&D.

RO

::':::; In addition to the sbove specific geals, the Revision A process Is guided by

)‘ the following broad objectives

l?\ o Provide technological currency of SCS

E:‘E'* 0 Accelerate software technology transitien

,',::' 0 Improve software portabllity

® © Encourage software productivity and sutomation

I L%

Ss © Support Ada Intreduction

',S X o Encourage production of gulity software

249 o Encourage software reuse

- © Improve post-deployment support and reduce life-cycle costs

A o Provide flexibility for developer innovstions

e tor's internal

1N © Minimize constraints of acquisiton process en contrac

s processes while enforcing sound discipline.

:l:l

o . | X R y OO
* SO0 P s b AT e g R b Bey iy #a he Ry By BT e
: "l':'s':‘a'f‘;':‘l‘:’ﬁ'ntb asdy 'p'o'vfl‘h&‘."j! re"af’*.‘.*'f."sf"ef"cJ",o;":z‘?a.".n“v W et Sttt B Wt

4
Wy

_53 E. SUMMARY CF CPEN ISSUES

During the SDS Package evolution, a total of 33 issues were |c:ntifled. At
the completion of the coordination review cycle, 29 of these Issues are closed
while 18 are open. Practically all of the open issues are partially resolved or have

oL
€

0 been resolved based on Interim solutions. During the joint JLC/CSM and COSDIA
N Task Group meeting on June 7, 9835 the follewing summary status and CODSIA
s reprioritization of open issues was documentecs
" o Primary lssues Requiring RAD 3
\ ° Primary lssues - Resolved in principle but
X require refinement 3
D ° Other Primary lssues 2
W o Secondary lisues)

;: o Tertiary Isuves =

i o Total Open lssues 13

(o Resolved lssues re/

; o lssues Requiring Govt/Ind Actlion s

A8 o Remapped lssves L)

-j o Grand Tota! 33

2

2.; The following four primary issues (Inciuding 3 issses consolidated into system

r engineering) require considerable R&D efforts
Y o lssues 6,10,29,50: System Engineering

i o lwsue N Ada Compatibility
, = Coding Standard
o - DID Talloring
o ° lssue §3 Firmware
. ‘e A ° lssue 233 Tailoring Appendix

“
2) The foilowing two new primary Issues are considered opem
s, o lssve 30 MIL-STD-490 B1/Cl (SDS compatibility revision)
i o Issve 351 Excessive data
Y
. The following three primary lssues are completely resolved In principle, but
v require consicderable refinements

o
A o lusues 16,17,13,21: Informal Testing
N ° Issue 81: SCF - Group
e © lIssue 43t SDS Encourage Autcmation
. The following four primary Issues relate to the SDS development process and
v not the SDS product. These isaues are considered closed as long as the planned
: SDS development process Is moving forward:

. o lswe R Implementation
o ° Issue 27: Revision Strategy

i) Issue 46: DiDs to be Superceded
e 0 lswe 471 Training

)

g The following four open lssues are categorized as secondary:

: o lssue 2: Relationship to 2163 (Rewrite 3.3)
4 |
Qe .

vy .

\ ::q:::d [
345
o }
3 ‘
a'

R

‘ 0 OGN0 T e BT BTy BT T TR I Ry By wry ¢ |
B R e N S < N M N e M S LR R N X TR S I DA PSR DA M S R S

° Issue 13t New Methodologies
° Issue a8 Fragmentation of Mgmt Plans
o Issue 48: DID Collapsing

The following five open Issues are categorized as tertiary

Issue 3 Supportabllity

Issue 3t Evolutionary Acquisition

Issue 18t SDS Discussion of Personnel Subsystam
lssue 50t Editorlal

lssue 31: Unclear

F. NEV REVISION A INITIATED ISSUES

00060 O0O

As a result of EJA Computer Resources W % on DOD-$TD-2167
conducted In St. Louls, MO., 16-20 September, 1935, an approsch to Artificial
Intelligence/Expert Systems (AL/ES) In the DOD-STD-2167 acquisition environment is
recommended. The approsch proposed by the EIA worichop is to handle AI/ES a: s
nRew category of software within the DOD-STD-2167 talloring concept. To address
this proposed new category of software five new issues are proposed.

l. Al/ES' Technical Development Methocologies are inconsistent with
DOD-STD-2167 (ssue 36). :

2. AI/ES Life Cycle Varies from Tradiitonal (ssue 57).

3. DOD-STD-2167 Documentation Is Imsufficient for AL/ES Systems
Qssue 53),

8. New AI/ES Optimized Life Cycle Management Methods are required
(ssue 39). .

3. Other AI/ES Unique lssues (Qssue 60).

No AI/ES comments or concerns were received during the three DOD-STD-SDS
review cycles. Based on lack of comments, it was feit that the AI/ES technology
practice was not sufficiently mature to Initlate guidance or standardization er that
the volume of business Is insutficient to be of concern fer DOD-STD-2167 Initial
release.

This assessment was changed a3 & result of the excellent work done by parel
2 of the EIA Computer Resources Workshop In St. Louls under the co-chairmanship

of Messrs. R.M. Bond of ARINC, G. Wigle of Boeing Aerospace and D. Preston of
ITTRI,

The early conclusions of the worishop panel 2 are as follows:

° 2167 1s tallorable for AL/ES

o Al/ES has potentlally serious Impacts on DOD-STD-2167
documentation

The primary drivers for AI/ES Incompstibllities with the Initlal relesase of
DOD-STD-2167 are as follows:

o Al Development Methodologies
- Exploratory Programming

s

B W)
N ,O*Q}.'ifg'l‘,.'!’qfi:v S ’:n"lfe'bt~"’9'°:|" &

Wy - Bottom-up

(= Non-Hierarchical

hige! (ﬁ'} ° Knowiedge Engineering not Addressed by DOD-STD-2167
’ Al Applied to Fuzzy Problems

o _ o Executable Data/Sel{-Modifying Systems

Jore 347

.l’s .
o) (R AN N AN IO RN TN A
Lntednd A R Ut AN UM

Y SN AN (OO A AR XA A IR, DN » o
":"‘3\0..50!.‘., , .0'..:0,) i!‘:".‘ﬂ.. RSN lgell‘!.l'\‘:.sl'-’2‘5‘#".A‘!‘l‘:’t“.(’!‘i'?‘ﬁn."a‘l’s".l‘f":e%‘q,l’m‘&’:’“& il!:‘q“‘v.“jlﬁ.q,"‘lx N -.w'fﬂ,'i’r

Al L

R
i
s
|
i
|
|
;
|
|
s
|
|

! .
4‘:.
D
‘] SECTICN 5. SUMMARY
B~ ~
! > This section provides a summary of the paper inciuding assessment of the SDS @5\’
ks Package, acknowiedgements, conclusions and recommendations. :
:E.:- A. ASSESSMENT OF SDS PACKAGE
[}
A The release of DOD-STD-2167 to DoD-wide Usage represents a significant
] accomplishment. Most of the objectives and goals set for the DOD-STD-2167 by
e the DoD and industry have been met. Work is continuing to improve the standard
’;\ where issues are still outstanding or where technology is driving future changes.
i Field experience within the DoD and defense industry and voluntary usage outside
R the DoD will provide the final evidence of Its success.
!
;: : To provide a more detailed assessment of the DOD-STD-2167 Unitial release),
Wy the following criteria are applied:

l. JLC SDS objectives
2. JLC/CODSIA issues criteria
3. EIA/AIA White Paper criterial?

vy

o~

'y

1

™y

4. DODD #120.2] Acquisition Streamlining Directive criteria

(4

T 5. General Standards Value criterial?

e 1. JLC SDS CBIECTIVES

.'4_: e —"

ol JLC SDS objectives are summarized below:

TR

" . Produce s complete, consistent tri-service set of acquisition, development and (ﬁ

-r' support standards which: ‘

‘;:’ o Establish s well-defined and easily understood soltware acquisition

T and development process

- ° Provide adequate visibility during software development and

' acquisition

3'.: ° Reduce condusion and eliminate conflicts in existing stancards

:;’; ° Are compatible with modern methods of developing sofltware

~ o Provide cost benefits over the entre life cycle

° Increase probability of obtaining quality software)

j‘ The first three objectives are completed with the initial reiease of the

i standard. The full attainment of the last three objectives are subject to SDS

?{. implementation, Revision A and the assessment of fleld feeddack from early

oy applications.

L] 2. JLC/CODSIA ISSUES CRITERIA
M

e The assessment of the Initial rejesse against the JLC/CODSIA issues T;::?‘

'{3 is summarized in Section 8. All 33 issues have been closed or h-veu" m

- ‘solutions contained in the & June 1935 SDS paciage. Eighteen issues are stll open

..:'\

L J

x,)

‘.:: ‘ﬁ:“
(t

.

> 348

L

X

e

'!.‘ l.‘._‘): H l.l. ..M ‘.!“.:‘l."’m ::\ 1 .. ‘ C'l. 'C‘I'O.CQ WV :'q..l..l el':‘:.:'él'&l‘; .‘.."Q.‘.' 0‘ ‘-_.b‘r.:'!‘l l.l.u.ﬁ.-.:.n‘:.o.:t

) for refinements and improvements during the Revision A process. Four jssues
require continued action by JLC/CSM Subgroup during DOD-STD-2167
::.: g& implementation:

'y ° Issue 9: SDS Implementation
R}
;:;' © lIssue 271 Revision strategy
L
'n::' ° Issue 86: DIDs to be superceded
3:;: o lssue 87: Training
ln All four actiors have been initiated, and as long as they are continuing, they are
:::: comidered closed.
. .‘.
o 3. EIA/AIA WHITE PAPER CRITERIA
)
_,“' The EIA/AIA White Paper criteria are summarized beiow:
%,:, © Sound Discipline Without Inhibiting Effective Desizgn
::' ° Flexible Standard to Accommodate Software of Differing Scope and
:::. Applications
o o Development and Management Methodology Must Accommodate
® Continuing Technology Advances Without Loss of Discipline
e
:‘: © Provide Clear Definition of Post-Delivery Support Requirements
:.:, Careful Integration of Diverse and Conflicting Factors
L
b2 Each of the above criteria has 8 number of sub-criterh.w A review of the
q{ subcriteria indicates that all of them have been mapped into the 355 JLC/CSM
"W A issues and that all of these are closed or have action items planned during Revision
:.:: A.
):..
:‘c s. DODD 4120.21 ACQUISITICN STREAMLINING DIRECTIVE CRITERIA
)
K™

The nine criteria contained in DODD #]20.2] dlrective“ which apply to DOD-
STD-2167 are listed in Tabie l-3. The initial relesse of the standard is fully
responsive to these criteria, with activities continuing during implementation and

::,.. Revision A phases.

4

5::: 5. Standards Value Criteria

,- The broadly quoted standards value criterian Is listed belov:I
-

. 2 © Standards should Educate

K © Standards should Simplifly

.‘ o Standards should Conserve

¥ ° Standards are a base to Certify Against

() -

i The DOD-STD-2167 and its implementation plans are responsive to all four
I Criteria listed above.

) @

Wy

C..'

U

0

KX 349

L

- . i . LA U AL A AR
T T T T T T L e S S e ettt iRt abntntntnsntiadale.

:0!!.1
W " TABLE 3.1
:::::) STREAMLINING INITIATIVE CRITERIA (DODD 8120.21) @
et Criteria Supported By
g i J'L,C SDS p SDS SOS Revision
vy ‘ nitiative Criteria olicy ackage |Implementation A
‘:::', l. §ystem-l.evel Functional ;
":::0 Requirements N/A x x x ;
N 2. Cut Off Referenced :
[0 Documents _ x x N/A N/A
V) 3. Reusable Preducts &
0, Baseline ' N/A x 2 (STARS) x
:a‘:. 6. Require Talloring of
" Stds & DIDs x x x x
R 3. Design Trades & Risk/
X Cost Management N/A x x N/A
r 6. Specify "What", -
not "How To" N/A x N/A x
W 7. AMSDL & DODISS STDs &
o DIDs Only x x N/A N/A
?& 8. DIDs Consistent With
oy Task Requirements N/A x x - N/A
tot 9. Only Required Data :
e Ordered N/A N/A x N/A
o
' 1
‘.‘. . Notes: N/A - Not Applicable; x - Criteria Satisfied
o ‘
3‘,:,.. B. ACKNOVLEDGZMENTS)
AP : .
! The roots of the SOS Package originate in the mid 1970s. The Initiation of
R its development in 1979 by JLC/CRM represents comsiderable vision and executive @
WYy level commitment. Credit is due to the past and present JLC/CRM chairmen
i) BGen. Donaid Lasher, Col. John Marciniak, Capt. Dave Boslaugh, and Col. Harold J.
! Archibaid.
e
ot The development of the SDS Paciage represents a significant sccomplishment
)_ by the more than 300 Individumis and over 130 corporations and Qwefmmt
.(organizations participating in its development. DOD-STD-2167 will have &
. significant impact on the $10 billion of software being developed In 19'35 for the
‘o) currently installed MCCR base of 185,000 computers. This impact will increase
fr.-} rapidly as the development of deferse systemns software tripies by the end of the
sl decade and the industry phases over to DOD-STD-2167 practice.
N The quality of the SDS Package and its continued evolution is the direct
K result of the IDA adopted by the JLC/SDM Subgroup chairman Capt. Lee Cooper.
*.:su: The contributions made by Capt. Cooper In the establishment of s framework of
ot cooperation between the DoD and industry are absolutely critical to the successful
3‘ results produced and the continuing evolution of the standsrds paciage.
, Further acknowledgements are due to
E{.%
Q o JLC/CSM Subgroup members and past and present Chairmen Lt.
e Col. Oberkram, Lt. Col. Casper Klucas, Major Larry Fry, Lt. Cdr.
":' Mie Gah! and Mame, "se (annae,
°
v, .'I
18 &
4o
%
.'N 350
.
?,
:”é:'. RO e N -" R Oty R T D S D o RN RO PO SRR IO DAL O DM IR, OO OO

3
]

ol

J‘L)- ot :'.

A

O

. -

i

>
-

)

<

A

<

e s ¥ O\ CRCNK CTION QLK B
s e G et i

o JLC and E!A workshop participants and their sponsoring
organiza‘ions.

o Industry and DOD reviewers and their organizational sponsors.

o Industry issue coordinators, special working groups and their
organizational sponsors.

o SDS Paélage development contractors DRC, TRW and Logicon and
in particular Mr. Dave Maibor of DRC.

] CODSIA Task Group 21-33 chaired by Mr. Jim Heil of ITT and
their organizational sponsors.

° EIA G348 Computer Resources Committee chaired by Mr. Jerry
Raveling from Sperry.

The material presented in this report has been extracted from the CODSIA
Task Group Report 21-33 on the DOD-STD-2167(SDS) Package Coordination Review
with full credit due to the membe:s of the Task Group. i

Author's participation in the SDS Package development represents a significant
investment by General Electric in the voluntary standards process. In particular,
the resource commitment provided over the years by Messrs. F. M. DeBritz and C.
B. Clarkson was critical in the formulation of the IDA.

C. CONCLUSIONS

The most significant conclusions related|to the SDS product are:

1. The quality of the SDS Package, as measured by issues resolved, is

directly related to the voluntary effort put forth by industry and
the DoD.

2. The SDS Paclage Is s significant aécompllshment and meets most
of the criteria established by the DoD and industry:

° JLC SDS objectives
JLC/DODSIA issues criteria

© EIA/AIA white peper criteria
o DODD #120.2 Acquisition Streamlining Directive criteria
0 General standards value criteria

Further, work Is comluinj for Improvements against the
sbove listed criteria where not yet fully met.

). SDS Package provides a standsrds foundation for technology
insestion from the other DoD software initiatives Ada, STARS and
SEl, as well as the private sector technology devejopments.

8. The accomplishment of a single soltware development standard is
not without risks. The range of computer programs to be covered
by DOD-STD-2167 is extremely broad. Talloring of the standard is
absolutely essential if the flexibility for spanning the wide range of
defense systems and the variations in project size and software
categories is to be achieved.

351

IR K TN AN AN R T T AT NN
srlodainimn e anttntadaiatinte fe et e,

Bl e

LA
!' v J
"
."‘lg

S

The most significant conclusions related to the SDS Package development

process are:

1. The IDA represents a significant change [rom the conventiona|
defense standards development process and was critical to the
quality of the DOD-STD-2167 and jts acceptance by the industry.

2. The IDA can serve as a3 model for the development of future
standards in the MCCR ares.

3. JLC/CRM commitment to the Revision A process and SDS
implementation plans was essential for industry endorsement of the
initial release of DOD-STD-216¢7.

D. RECOMMENDATIONS
The following are the most significant recommendations:

l. Industry and DOD should provide adequate resources to complete
the planned Revision A process by June 1937. - The lssue resolu-
tions should be completed by June 1986.

2. Industry and DoD volunteers should establish JLC/CODSIA

Coordinated working groups to address esch of the Revision A open
issues.

3. Industry associations and DoD organizations should consider
sponsoring JLC/CODSIA coordinated Joint DoD and industry
workshops to address the following seven major Revision A issues:

6 Autiomation

o Methodology

° Reusadle Software
o Ada

o System engineering
° AUES

o Firmware

8. Industry and DOD should refine the IDA for Revision A and use it
83 3 model for the development of future stancards In the MCCR
area.

3. The coordination and technoiogy transfer between the JLC SDS
software Initiative and the other DoD softwere Initiatives: Ada,
STARS and SE! should be Improved.

6 DMSSO should consider developing datas bases, tools and network
sccess {or the autamated procrasing of public review comments.

167

7. Industry and DoD should support the proposed DOD-STD-2
implementation plans 30 that the full benefits of the SDS Paciage
caan be achieved in & timely manner.

and

§. Individuals Interested in participating In working groups
organizations comsidering sporsoring COD-STD-2167 Revisien A lsae
resolution activities should contact the fcilowings

352

¥ y Al WA
O R T R R

&

DOD: Capt. Rick Butler or AlAs Mr. Austin Maher
Capt. Lee Cooper Singer Kearfott Corp.
Andrews AFB, MD 2033 150 Totowa Rd
(301) 981-5731/» Wayne, NJ 07470
AV 838-5731/» (201) 785-6607

ElA; Mr. Ole Goludbjatnikov NSIA1 Mr. Jim Heil
General Electric Co. ITT Avionics
FRP], Room D6 100 Kingsland Road
Syracume, NY Clifton, NJ 07041
(313) 4364700 (201) 2804-2946

" REFERENCZS

. CODSIA Task Group 21-33, Report on the DOD-STD-2167 (SDS)
Paclage Coordination Review, Vashington, DC, November 1933.

2 CODSIA Task Group 13-32, Report to USD(RAE) on DOD Manage-
ment of Mission-Critical Computer Resources, Voiume | and 1I
Washington, DC, March 1988,

). EIA 1932 Workshop Panel | Report, "Impeact of Tri-Service
Initiatives on Software Development (Draft MIL-STD-SDS
Coordination),” EIA, Washington, DC, September 1982.

8. CAPT Lee Cooper, "Issue Resolution Procedure,” JLC/CSM, Andrews
AFB, 21 July 1983.

J. CAPT Lee Cooper, "Discission of Proposed MIL-STD-SDS Issve
Resolution Strategy,” JLC/CSM, Andrews AFB, 21 July 193).

6. David S. Maibor, "Summary of Concerns Ralsed for Each lssue,”
DRC, Wilmington, MA, Original issue 2 November 19304, as updated
by Capt. Cooper 7 June 19383,

7. DOD/CSSD, STARS Software Technology for Adaptable, Reliable
Systems - Defense Industry Briefing, San Dlego, CA, 29 April 1935.

§. Software Engineering Institute - Industry Afflliates Symposiu,
Carnegie-Mellon University, Pittsburgh, PA, 30 September 1935.

9. Electronic Industries Association, Computer Resources Committee,
:9:!1 Annual VWorkshop Report, St. Louis, MO, 16-20 Septmeber
95.

10. “Suggestions for DOD Management of Embedded Computer Software
in an Environment of Rapidly Moving Technology,® EIA snd AlA,
Washington, DC, March 1932. .

1. Draft DODD §120.21, "Acquisition Streamling,® DOD, Washington,
DC, June 1933 and associated attachments,

12. Charles D. Sullivan, Standards and Standardization, Marcel Dekker,

Inc., New York, 1983.

353

3 CODSIA 21-83

" DOD-STD-2167 REV A PLANS

0. GOLUBJATNIKOV
N GENERAL ELECTRIC COMPANY
& VICE-CHATRMAN CODSIA 21-83 TASK GROUP

] MARCH 1986

. sa
MO X XN

-
"—

-

™,

CCH @

=) o>t

=

T s 5,
i
= e
-
f)’
»

g

355

.

‘|
A
'
»

L OCARLAONOBOAONMONEAN T N SIS O O K A N X AR TS M PO O R O X MRS :
,.':'_n‘?i:‘?h‘:h".h'?w ’E\"3*\535‘,iji«‘?h‘?n"h‘f A‘.v“if‘,‘nfﬂ’.,f"w"‘-\:.!"ft"s?“Q?"e?";5"‘:‘.*":’3‘1’,"!""“'l""l"l‘a,l"w’r'.‘i‘sf"-"‘c‘&'rk‘“afS’a‘:l‘-.}' ! 5'9'?%;'3."-!’."-"' LA

pale s

COVERAGE

® REV A SCHEDULE
)
4
¥

R3S 0 TECHNICAL ADVISORY WORKING GROUPS (TAWG)

il 0 TAWG GUIDELINES

ol 8 SUMMARY
0 -

i‘.:" -

"" h -

STATUS

ADA TAWG

AI/ES TAWG

FIRMWARE TANG

SYSTEM ENGINEERING TAWG
REUSABLE SOFTWARE TAWG
EVOLUTIONARY ACQUISITION TAWG
SOFTWARE QUALITY FACTORS TAWG
METHODOLOGY TAWG

AUTOMATION TAWG

356

o _— . , -
N Fy DAONBD b] GO0] RIS e RTe AT e,
B T A X R A X R R N DGO X R SRR

&
il

00
O

3

p

X A
€4
RROLN

T
S

ke &

%fb DOD-STD-2167 REVISION A SCHEDULE ‘ J

n ® REVISION A KICKOFF MEETING 15-16 JAN 1986
e ® CODSIA 21-83 REPORT REVIEW & COMMENTS JAN-MAR 1986
® INITIAL INPUTS FOR REV A DRAFT 15 MAR 1986
NG ® CODSIA MEETING (CRYSTAL CITY) 20-21 MAR 1986
o ® CODSIA/JLC MEETING (SAN DIEGO) 9-11 APR 1986
o 8 TAILORING WORKSHOP | 15-16 APR 1986
sl ® FINAL INPUTS FOR REV A DRAFT 30 APR 1986
o fov ® REV A RELEASED FOR COORDINATION 15 AUG 1986
R ® 60-DAY REVIEW COMPLETED 15 0CT 1986
P D REVISION A FINAL DRAFT REVIEW 1 JAN 1987

iag ® REVISION A TO DMSSO APPROVAL 1 MAR 1987
‘ .

0 REVISION A RELEASED JuL 1987

b b5

Ny 357

..'.\ |

! : . AN ¥ 1%, 0% A AT (N A g OOCHATY M
KRR QOIS DR NY NI s .'t‘g'\"b.of Wy %‘)}t’ ol it Q.‘.'!'.0&:”);""#,%%‘.‘e“-’*')a’t‘a"}n l‘l.m‘&'!'l"“‘s'l’?"'.l.l. Lo b RN

7] & &

= | . I A YO~ LWL TNy 2DVLIV A
~Jo~FLHIS NIFONAY JND AL I7¥ISOTD N/ SAS5(3SY . P0H L

dHT-QL5-90Q ' FJ/UIHNI-H4O~AWLS SLoD 434 (21T-d15 -Qad

------'t-----H"'--n'nu“m“m-“-\"

ITS e OMy.d
<t <€ 1<
SAYLS @ SAV 1S @ (ncr-ars-agode :
. = S H sdoLvd LLluny ofs
= s3/1y
—— : A2 g1y
o0
-
, oA IINIIN 2 WA LS
_m NOILYIvalny
=g JJUMldos 2TYMSNIY
/2070A0HLAY
Yoy
v (LA F100 P NP ENTZ)
Jav~de-3IVIS aau-do-TWIS 3N ~do-31W1s wt._v.n NI
LdFIVOI (VOILEASy! ADQIONHIIL & N3Y (91 =01s-dod
2 o e R R N e R o R SRS SRS

Rad 2.0}

AFOSINGE
"‘0?&‘»’5‘;85“;‘«

h
v

¥31UNG -y 1d¥D dNOY9IENS WSI/Ir dOHSYOM INTHOTIYL um
dOIHSNYON Mw
YOSNOdS 033N aMvL NOTLVWOLNY Mm
(39) LNYHYHIT *H/(YSN) TIVYUNS *9 4OSNO4S GIIN 9MYL A907000HLIW wwA
(LL1) I3 “H°r VISN 9HYL S¥01IVd >__¢<=a JUYMLH0S mm
(319) ¥3anvg <3°3/(39) SSINAT H IVIWOI/YISN OMYL NOTLISINGIV AYYNOTLNO0AZ _ Mm
(4VMVAS) TXIVTON *a°Y VIV SY/SuviS 9MYL JUYM140S T1AVSNTY = Mw
Awuzulzv HI0TINIM - ViV 9MYL ONTYIINIONT SWILSAS mw
(11044Y3N-YIONIS) HIHYW “r°V ViV 9MVE JYVMWYI 4 mw
o
(9N1304) I191M “9/CT4LIT) NOLSIYd “d he-9 ¥173 9MYL SI/1V Mw
(XOAVNOYW) HLIWSIYIL -9-d Vayars wiv (9MYAYSAS) vav ;
| 1JVINOD YOSNOdS AVl

£912-01S-400 NO (9MVL) SANOY9 ININYOM AYOSIAGV TVIINHIIL £8-TC VISAOD

' S W R § ks ﬂ&* - - - o
SEARARan ~ Y s

Iord YR v
.z‘agcﬁlza.i‘h-h,}’ ¥, e,

b }.‘
) ,)Q
)
o
D
i
s‘l'é
o
)
Part

[
BVl AR e o S e ® ﬂ y

P

s
1] -
o s it [(R (L 1] oy W e leer}
oot o od sow)mesel UL JUL I " we i v e shunre . T LALLM wore wt reg)
v [ULLL AR LT N SVRIIIN (L)] s evis SHAING) PM e a0 PMivr 9N 10D § 30 "
11015V 000 NS Mve TIonrmu wve ve 1omvyn g 103 1mmy amul Swreen e 1 o
) ‘0 - —]
oren-eue 18 1608 908 hae? L3 11 { “Touig ew ue) 9990 092 herd [TR L8 11 e e e
|t utw 100 rwe R wesuvw mMme 4903 SN s maomg fintsEm devae Ll g SHRVELIO AN
WIOUe 50 NIVYN Beves 0Dese 20vee ATEYN Bnee |ALED B "o Pef 9wy >N WUV 1198 L 22 1] "w
e et ud L L 1 (1) LT a2t 900 bag) azig-ore e " soer-2xt W1 (1L 2 1 ("] re-tiz ost) osce 2ot o)
[~] WIenke 11s . SInmet S aTYReen [1] LI] smres SRIWeE) E BRI
o rus MY 1000 mme mwIN merune 907 3 Grvmen Smer 1miven TR ¥ Swves 9o smere Sreer juseen wow
- . arte eee toned - :
. . : 1900wy} ssne
- . w el ores st ree) et o0t 2l rese 151 ! LR A] osre ¢ox lreel [£ 10
19 100 Byt moserster? | » [4] ”» . SEroan nroweznsim [] . (17
(L 01 1] 003 sy Mrwrenves e (17 213 I8 wave ey ounYm Wve suInmat 30 PEVEINNAYY 008 SEIMVE AN L] w
s S v . o s el [}
y EEET) . SumveLe w9
suswI apwekid (] auswsum _eemeint L L) 1ot (wry sremans) P W AHEIAT) 03
ol .. et . met A mal -l a1 e .t] 2o Mo NI
Fovans iarn VS N yovavs imn v aen vt amn . sy anrens wvavs s YovaYE ssun - -
: s . Ta v ve. IVN/IONAVE sl
* S ¥ } . o001 (82 but wer av il
oo . ¥ c g k : souinn W yaveIe
" S ... 5 . . aee omeIvvevE ®
swmnid’ | gueniw (T o7y 900 troet LI NI it tar we ! vrse 00 rt 1991 setneeh
15ahss nHnmet mo- sheavs o U Lid et semLsvy Wl
W0om wed Atony avy [i deoddel) TV MIWR) 180000 el vor " i manman,_ | -
. SWSNRTRIS @ 17
0980 900 tege} "o inet as Ut isn s kie aret et M) e 999 teae? sare e lrond 0900 790 trer? 3905 UN/SHINGN B W)
oy, ."e R nv v . vrave [212 vy T ARUY/VEmW T8 W)
SN e e IS e "vee nw 17eve e owvaY) por - SMIWONY AWy "y vor myVIen ses SITSAMIVEE 199008 90 r/me
T : - S1gmnowAR) . .
we . | weuwwareisyy | ssewesnim stawtne SINmMMATYIN *-owrmIny > S3enet BvInN oY Ny SRINIITEVE WVEIeNs SnIvIeVIS
: .- : v 08 :
dNOY¥I ININYOM IIVIHIINI - SHVIS
_ & AP NI i = PRRRARRIIG TS St - S ARG CANN L - SOT [AR e W Snindre =0 e
S I R SR et R QL S efr] e PUSSatd el

€1 TERTN I z-u—:ww“wj

E wﬂwu_n.l‘OL

L6TSX

8£29-8(h(20L)
0£92-tnS(T02)

9h62-h8C(T10C)

0£LT-96h(STE)
000Z-6hh(L19)

h848-269(202)
1£2h-204(818)
£099-984(T102)

1668-£££(902)
114g-65h(10¢%)

LTgh-6Ch(61C)

39
vsn

111

19
319

YYMVdS

SIHINH

11044YIN-Y3I9NIS

9N1304
R IRR!

XOAVNIVW

LdNYHYHIT “H
TIvYuNS -9

I H°r

SSINAT “H
d3anvd °J-3

IXIVI03 -a-y

HI0TINIW v

S ——————————

S1JIVINOD

AR
R,

@iV Y

et ar NSRS

NOILYWOLNV

A907000H13IW

SY0LIV4 ALEIVAND JYVYML40S

NOTLISINOIV AYYNOILNI0AT
JYYRL40S 3149vsn

INTHIINTINT WILSAS

YIHVW -F-V ELLLUETE
319IM -4°9
NOLSIUd -9-@ S3/1v
HLINSIHId *9°Q vay
o
o R L Qa2 e @

%

s

' ® R

361

2@

-
-
N

ST TR mmmm‘r.t!““w‘w-ﬂ

T ERN ENEN SR N ENC W

Li Afa s Al 2

x_» B _w_ & A «_v gm - - - - e l)i S . .
> & R 5 Schc) by ‘& e o | N A S - b a .¢\-Y.k\\n7_
| EERERARR VESARASS TR SRR O

@

F

SYIAHIW A3LVII0SSY

SITLNG S, A¥VEINIIS

S31LNa S,NOSYIJYIVHI-IIIA
S31LNA S.NOSYIJYIVH)D

YOSNOdS

SINIVYISNOD 40 TVAOW3IY 3IHL NO L4O0d3I¥ QHY YOLINOW

JINVAING WIYILNI
JATAOYd ANV SINIVYISNOD ONILSIXI OL SY ALINAWWOD 3INL WHOINI

3d403S INVL J0 VI¥Y ML
NI 21F/VISQ0D 01 SNOILNI0S (NIWWOIIY ANV SIAILVYNYILIV IZATYNY

9MVL 40 3d03S 3IHL NIHLIN
SINIWWO) MVY 40 SISATVNY ONV M3ITA3Y 3JHL NI JIF/VISGOD 1SISSY

INVL VIWIAYIY
ANV G0d “AYLSNANI INIOF 3IHL ¥0J YONIANOD ONV YOSNOJS V SV 1DV

NOLLIVZINVIYO ©

SINITIAING (IMVL) dNOYI ININYOM AYOSIAQY 4<u_==uu~

SIAILIICE0 @

362

(

BTN)
‘ "“Ai.ihtf‘h“’ﬂi‘

'0»‘

IS0,
Peateaty h‘:’c‘:b"%'

0
At

0 OO0
AORIRGN

-
e o
-
-
-
-
-
-
-
-
-
- -
-
-
-
-
-
o
iy
-
-~
-
-
-
-
-
-
e
A
a
o
-
-
s
|
-
o
-

Q

A Xy ¢ 1
St e et B e Rt T e e e

CODSIA TAWG GUIDELINES

8 PRODUCTS AND SERVICES

- TAWG CHARTER
- TAWG MEMBERSHIP LIST
-~ TAWG MAILING LIST
- MINUTES OF TAWG MEETINGS
(. - ISSUES AND CONCERNS ANALYSIS REPORT

::i::: - FORMAL RECOMMENDATIONS TO CODSIA AND JLC
)

-

HO [~

.

@ [T

oS

5

i)
o

363

-
-
> o

-
o

Sy

Ty o) R ' y DR % RPN,
At D T T e e A N AR RN,

) JAR) LA U
s, “"tt"!#"?:"tvgi‘.i‘ﬁ'e-_”l‘ ER RS0

RN KRN

CODSIA TAWG GUIDELINES

8 _APPROACH

MEETINGS
- WORKSHOPS
- STATUS REPORTING

- = INTERIM CODSIA/JLC GUIDELINES
- COLLECTION OF COMMENTS

- ANALYSIS OF COMMENTS

o COMMENTS
o CONCERNS ﬁm
.:3 e SUBISSUES
's o ISSUES
.:‘
) - DEVELOPMENT OF ALTERNATIVES AND RECOMMENDATIONS
N
)
:'. - REVIEW OF RECOMMENDATIONS
A
@
' - FORMAL SUBMISSION OF RECOMMENDATIONS
h,
)
?'f' - MONITORING AND ASSESSING ISSUE RESOLUTION
a
9
B
’.:)
Ry
.'.
i
L]

]

-

e

"

-

< -fY:

-
Eaf o

364

L e

D U S R T AT A T M A UL R T AR
O RN R O

PN

-- SDP ADA CRITERIA

22 ®
ADA TANG

b/ N7

INITIAL INPUTS HDBK-287
INITIAL ADA REV A GUIDANCE

=
ad
—
>
d
=
(7]
il
=
(7]
[7]
—
M~
- -]
D
p-V4
(==}
[—
=

]

]
—
S
—
—
[]
-
<<
[
[T
D
(-4
(48]
A4
(V=]
-]
(=]
—
[--]
il
[#
™~
—

|
(=]
—
[

(-4
[N 8]
f—
a
<
=
o

[}

1
-~
[Z2]
ad
-
bl
[}
=
<
o
[
-
~
(Ve
[=~]
[=2]
—
[-~]
ad
[~
[_J

o,
8 DEC 1985 (BOSTON) -- CHARTER MEETING

ol
ACM SIGADA
DECEMBER 1985

DATE ORGANIZED:
ACCOMPLISHMENTS:

SPONSOR:
MEETINGS:
MEMBERSHIP:
PLANS:

Y 365

te . S § ”
L g g ey > 7 A5 g hy Tr 5

N

1% 342

FIRMWARE TANG

WINEWEE PR W WS .

SPONSOR: AIA ECSC

DATE ORGANIZED:

MEMBERSHIP:

PLANS: APR 1986 -- KICKOFF MEETING

LA R N MO I UK A RN T AN 2
RURR N NIOUUUIRICE N KU e O

366

: #,f«-';'a‘-}‘h‘;ﬁn?\’ Cadete

W

5’&5‘?@‘.‘?:“;t‘.'t:‘i:“_ ENELN

)

S
AI/ES_TAWG

LH Ch

/

-
g

ANALYSIS

8 16-20 SEP 1985 (ST LOUIS) -- EIA G-34 WORKSHOP A1/ES ISSUE STRUCTURE

AL
EIA 6-34
@ AI/ES ISSUES TAXONOMY (EIA G-34 WORKSHOP REPORT)

SPONSOR:

DATE ORGANIZED:
MEETINGS:
MEMBERSHIP:
PLANS:
ACCOMPLISHMENTS:

n"‘l. & E
)

"3%‘: 367

s T

OO0 ¢
1 s

b aky

R DOIGO0 i ? 0 i Ay ANy Ty A0 Ay as e s 4V, RV gty §90 8% €8, Ve gty S A 00
ORI telte g it T S G i I B R SLIERCIN AR,

A T B LY VT TR s bl ENEMNEITERN

-~ STARS APPLICATION WORKSHOP

(-]
=
<
[
ld
as
- -
z 2 *
= ;
(=] | ,
72} -
—
Ll =
-
< < S
Q
[2] Ll > pe
- = f=] .
e < - "Q
[—3
= o
(=] [--]
o— [=2]
f— —
<<
[o=
— <
p— |
= =
Q. ™~
< >
(7] =
(-4 N
S
f—
[7] (]
=
d
~
— e
= Qa
- ew —
e (X-] (7] =
[- 3 as D (72]
Q [—] = az .o
(72 — d [72)
- (¥9) | g (-~} -
(=] [t i = -
Qu [(¥¥) hd -
(7] [— = = Q.
Y
2 &
l..'!
1y A
! 368

ULSAN
[} p‘.a.“eil‘»;,h

DRPORIOG TR o : OA0 ‘ : : NN ‘ -
s.":t;'ltg.!t.,. O . "‘“n’- .‘?’:lf.?A“:"‘:!“fﬁ“”k b’)“?,'?iqf Y "e‘l‘_n'l’g’i.h*ifnﬂ,r%. \'l",l"{&"ﬁ -
. . . - " LA .

3

prpw——
i e
"

77

»

DOD-STD-2167 REVIEW
COHRERCIAL AND REUSABLE SOFTNARE ISSUE (26)

TOP-DOWN HIERARCHICAL DESIGN REQUIREMENTS

"OFF-THE-SHELF® -VS- "COMMERCIALLY AVAILABLE”

PDR ENFORCEMENT OF SOFTWARE REUSABILITY AND STANDARDIZATION
REQUIREMENT FOR “RATIONAL USE OF REUSABLE SOFTWARE*

SS2P MANUAL REQUIREMENTS
LC MANAGEMENT REQUIREMENTS

PROCURING AGENCY APPROVAL
DATA RIGHTS

26-9
ACCEPTED/RESOLVED
REJECTED
T0 BE CONSIDERED FOR REV A

6-1
26-
26-3
26-4
26-5
26-7

R

¢ DEVELOPMENT OF ADDITIONAL ISSUES AND RECOMMENDATIONS
REV A

DISPOSITION KEY:

REV A 26-8

®
SUBISSUES:
® RANDOM COMMENTS -VS- STRUCTURED REVIEW APPROACH

APPROACH:

RN

N 369

A A "y APAAYE 101 0% WV R Ty R 49 (5)) 17 A% OSOSOLAN0 ATt gty !
e "“ R ?“lt“x‘t‘a‘t’a.i‘at('z.!‘ ';‘t*k"':‘,!‘.."".}A‘S.i’?\{!":‘%':.ﬂewzll’.‘a‘ 'z‘ﬁ'zi:‘i"."?a':’:'&‘i‘-*!‘a".‘h":s‘i.’Jﬂ!ia!!':!‘..‘;!!*x‘!‘.i!";i!‘:'.t‘.%‘.’.’b?.t’?l‘.»‘t;:‘d‘ PNV '!h:t‘l'.:h!a'é‘

X

gt
Al
‘ L]
iy
‘*‘
®
Ay
B
"‘c 3y SECURITY CLASSIFICATION OF THIS PAGE
:! Form Approved
;.’. M A REP JRT DOCUMENTATION PAGE OMB No 07;4-0788
S AN
i!'.t "4 ¥%'1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
k UNCLASSIFIED
"V; 2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
s . T .
Xl 25 DECLASSIFICATION DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.
)l
$
":.t 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
B |
\j NRL Publication 0120-5150
IR,
WX 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
) (If applicable) ‘
:\=: Naval Research Laboratory Code 5150 Naval Research Laboratory
)
;.' s 6c. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and ZIP Code)
(Washington DC 20375-5000 Washington DC 20375-5000
'l-::i‘
X 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBQOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
Y ORGANIZATION (If applicable)
. SPAWAR
(3 8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
\. ifl'AWAR 613 036 ELEMENT NO NO NO ACCESSION NO
.':'.: ashington DC 20363-5100 . 51-2259
:}: 11. TITLE (include Security Classification)
o
": Software Technology for Adaptable Reliable Systems
)
o (12. PERSONAL AUTHOR(S)
20alCS, g,"-'
kY 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
;:.' Conference Proceedings rrROM 24 Mar 10 27 Mar 368
j"i at 16 SUPPLEMENTARY NOTATION
N
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and dentity by block numoer)
-‘).;-f FIELD GROUP SUB-GROUP
+.4
1.0 .
' ; 19 ABSTRACT (Continue on reverse if necessary and identify by block number)
s
2 Conference Proceedings for Workshop on applicaton systems and reusability (24-27 March 1986).
fot
N !
G
AP
bt
Wy
oo
) 54.'
‘)]
)
)
‘5_ L3
. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
" Mo Eunclassipeo/uNuwiTED 0 SAME AS RPT [OTIC USERS UNCLASSIFIED
; %222 NAME OF RESPONSIBLE INDIVIDUAL 22h. TELEPHONE (include Area Code) | 22¢ OFFICE 57MBOL
2. ; Elizabeth Wald (202) 767-3040 Code 5150
'a:g: DO Form 1473, JUN 86 Previous editions are ohsolete. SECURITY CLASSIFICATION OF THIS PAGE
[AX)
iy 37
L
s
EAS)
o
L ha

(AR . AN (T)8 gty P :
NIAGH !l'ai'\:l'n, '._c!;’l',f.‘t!l‘.fn’..l ;f"c!i't. 'p!l,u '.rf"a.‘!‘l..'!oel,’t."J',’l‘.'?b !l'l’:‘! .

RSO FE = -
At OO U U NS EN YOO
AT LA S IC R | UL DDA VR ER NS
* MR R "*‘s““fﬂ"?ﬁ‘i‘-"‘:ﬁ"s

‘»;"\ O RO A O R IO IO . o e
ot B OO GHNOOBOSONA 5 S PA DTN by R, :
LA Pl "-7.“*.}. ‘!2*.9?‘:9,"-"“%" i ’ "&?t#‘f:‘(’»‘;%e‘:b?fd’:":'ali?" 3

TR N

